Model save
Browse files
README.md
CHANGED
@@ -32,16 +32,16 @@ datasets:
|
|
32 |
type: alpaca
|
33 |
dataset_prepared_path:
|
34 |
val_set_size: 0.2
|
35 |
-
output_dir: ./qlora-qwen25
|
36 |
|
37 |
-
sequence_len:
|
38 |
sample_packing: true
|
39 |
eval_sample_packing: true
|
40 |
pad_to_sequence_len: true
|
41 |
|
42 |
adapter: qlora
|
43 |
lora_model_dir:
|
44 |
-
lora_r:
|
45 |
lora_alpha: 128
|
46 |
lora_dropout: 0.05
|
47 |
lora_target_linear: true
|
@@ -54,8 +54,8 @@ wandb_name:
|
|
54 |
wandb_log_model:
|
55 |
|
56 |
gradient_accumulation_steps: 1
|
57 |
-
micro_batch_size:
|
58 |
-
num_epochs:
|
59 |
optimizer: adamw_torch
|
60 |
lr_scheduler: cosine
|
61 |
learning_rate: 0.00002
|
@@ -97,7 +97,7 @@ fsdp_config:
|
|
97 |
fsdp_sharding_strategy: FULL_SHARD
|
98 |
special_tokens:
|
99 |
|
100 |
-
wandb_project: qwen-25-7b-instruct
|
101 |
wandb_entity:
|
102 |
wandb_watch:
|
103 |
wandb_name:
|
@@ -118,7 +118,7 @@ auto_resume_from_checkpoints: true
|
|
118 |
|
119 |
This model is a fine-tuned version of [Qwen/Qwen2.5-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-7B-Instruct) on the medalpaca/medical_meadow_medqa dataset.
|
120 |
It achieves the following results on the evaluation set:
|
121 |
-
- Loss: 0.
|
122 |
|
123 |
## Model description
|
124 |
|
@@ -138,30 +138,34 @@ More information needed
|
|
138 |
|
139 |
The following hyperparameters were used during training:
|
140 |
- learning_rate: 2e-05
|
141 |
-
- train_batch_size:
|
142 |
-
- eval_batch_size:
|
143 |
- seed: 42
|
144 |
- distributed_type: multi-GPU
|
145 |
- num_devices: 4
|
146 |
-
- total_train_batch_size:
|
147 |
-
- total_eval_batch_size:
|
148 |
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
|
149 |
- lr_scheduler_type: cosine
|
150 |
-
- lr_scheduler_warmup_steps:
|
151 |
-
- num_epochs:
|
152 |
|
153 |
### Training results
|
154 |
|
155 |
| Training Loss | Epoch | Step | Validation Loss |
|
156 |
|:-------------:|:-----:|:----:|:---------------:|
|
157 |
-
| 0.
|
158 |
-
| 0.
|
159 |
-
| 0.
|
160 |
-
| 0.
|
161 |
-
| 0.
|
162 |
-
| 0.
|
163 |
-
| 0.
|
164 |
-
| 0.
|
|
|
|
|
|
|
|
|
165 |
|
166 |
|
167 |
### Framework versions
|
|
|
32 |
type: alpaca
|
33 |
dataset_prepared_path:
|
34 |
val_set_size: 0.2
|
35 |
+
output_dir: ./qlora-qwen25-instruct-2
|
36 |
|
37 |
+
sequence_len: 2048
|
38 |
sample_packing: true
|
39 |
eval_sample_packing: true
|
40 |
pad_to_sequence_len: true
|
41 |
|
42 |
adapter: qlora
|
43 |
lora_model_dir:
|
44 |
+
lora_r: 32
|
45 |
lora_alpha: 128
|
46 |
lora_dropout: 0.05
|
47 |
lora_target_linear: true
|
|
|
54 |
wandb_log_model:
|
55 |
|
56 |
gradient_accumulation_steps: 1
|
57 |
+
micro_batch_size: 2
|
58 |
+
num_epochs: 3
|
59 |
optimizer: adamw_torch
|
60 |
lr_scheduler: cosine
|
61 |
learning_rate: 0.00002
|
|
|
97 |
fsdp_sharding_strategy: FULL_SHARD
|
98 |
special_tokens:
|
99 |
|
100 |
+
wandb_project: qlora-qwen-25-7b-instruct
|
101 |
wandb_entity:
|
102 |
wandb_watch:
|
103 |
wandb_name:
|
|
|
118 |
|
119 |
This model is a fine-tuned version of [Qwen/Qwen2.5-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-7B-Instruct) on the medalpaca/medical_meadow_medqa dataset.
|
120 |
It achieves the following results on the evaluation set:
|
121 |
+
- Loss: 0.1429
|
122 |
|
123 |
## Model description
|
124 |
|
|
|
138 |
|
139 |
The following hyperparameters were used during training:
|
140 |
- learning_rate: 2e-05
|
141 |
+
- train_batch_size: 2
|
142 |
+
- eval_batch_size: 2
|
143 |
- seed: 42
|
144 |
- distributed_type: multi-GPU
|
145 |
- num_devices: 4
|
146 |
+
- total_train_batch_size: 8
|
147 |
+
- total_eval_batch_size: 8
|
148 |
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
|
149 |
- lr_scheduler_type: cosine
|
150 |
+
- lr_scheduler_warmup_steps: 13
|
151 |
+
- num_epochs: 3
|
152 |
|
153 |
### Training results
|
154 |
|
155 |
| Training Loss | Epoch | Step | Validation Loss |
|
156 |
|:-------------:|:-----:|:----:|:---------------:|
|
157 |
+
| 0.1255 | 0.25 | 37 | 0.1342 |
|
158 |
+
| 0.1201 | 0.5 | 74 | 0.1235 |
|
159 |
+
| 0.1227 | 0.75 | 111 | 0.1159 |
|
160 |
+
| 0.1289 | 1.0 | 148 | 0.1116 |
|
161 |
+
| 0.1004 | 1.25 | 185 | 0.1131 |
|
162 |
+
| 0.0783 | 1.5 | 222 | 0.1124 |
|
163 |
+
| 0.053 | 1.75 | 259 | 0.1171 |
|
164 |
+
| 0.0747 | 2.0 | 296 | 0.1132 |
|
165 |
+
| 0.0629 | 2.25 | 333 | 0.1366 |
|
166 |
+
| 0.0655 | 2.5 | 370 | 0.1443 |
|
167 |
+
| 0.0492 | 2.75 | 407 | 0.1435 |
|
168 |
+
| 0.0509 | 3.0 | 444 | 0.1429 |
|
169 |
|
170 |
|
171 |
### Framework versions
|