neginashz commited on
Commit
d272568
·
verified ·
1 Parent(s): 7772358

Model save

Browse files
Files changed (1) hide show
  1. README.md +25 -21
README.md CHANGED
@@ -32,16 +32,16 @@ datasets:
32
  type: alpaca
33
  dataset_prepared_path:
34
  val_set_size: 0.2
35
- output_dir: ./qlora-qwen25
36
 
37
- sequence_len: 8192
38
  sample_packing: true
39
  eval_sample_packing: true
40
  pad_to_sequence_len: true
41
 
42
  adapter: qlora
43
  lora_model_dir:
44
- lora_r: 256
45
  lora_alpha: 128
46
  lora_dropout: 0.05
47
  lora_target_linear: true
@@ -54,8 +54,8 @@ wandb_name:
54
  wandb_log_model:
55
 
56
  gradient_accumulation_steps: 1
57
- micro_batch_size: 1
58
- num_epochs: 2
59
  optimizer: adamw_torch
60
  lr_scheduler: cosine
61
  learning_rate: 0.00002
@@ -97,7 +97,7 @@ fsdp_config:
97
  fsdp_sharding_strategy: FULL_SHARD
98
  special_tokens:
99
 
100
- wandb_project: qwen-25-7b-instruct
101
  wandb_entity:
102
  wandb_watch:
103
  wandb_name:
@@ -118,7 +118,7 @@ auto_resume_from_checkpoints: true
118
 
119
  This model is a fine-tuned version of [Qwen/Qwen2.5-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-7B-Instruct) on the medalpaca/medical_meadow_medqa dataset.
120
  It achieves the following results on the evaluation set:
121
- - Loss: 0.1257
122
 
123
  ## Model description
124
 
@@ -138,30 +138,34 @@ More information needed
138
 
139
  The following hyperparameters were used during training:
140
  - learning_rate: 2e-05
141
- - train_batch_size: 1
142
- - eval_batch_size: 1
143
  - seed: 42
144
  - distributed_type: multi-GPU
145
  - num_devices: 4
146
- - total_train_batch_size: 4
147
- - total_eval_batch_size: 4
148
  - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
149
  - lr_scheduler_type: cosine
150
- - lr_scheduler_warmup_steps: 4
151
- - num_epochs: 2
152
 
153
  ### Training results
154
 
155
  | Training Loss | Epoch | Step | Validation Loss |
156
  |:-------------:|:-----:|:----:|:---------------:|
157
- | 0.1473 | 0.25 | 18 | 0.1576 |
158
- | 0.1456 | 0.5 | 36 | 0.1333 |
159
- | 0.121 | 0.75 | 54 | 0.1312 |
160
- | 0.1328 | 1.0 | 72 | 0.1303 |
161
- | 0.1336 | 1.25 | 90 | 0.1276 |
162
- | 0.1228 | 1.5 | 108 | 0.1263 |
163
- | 0.1199 | 1.75 | 126 | 0.1260 |
164
- | 0.1393 | 2.0 | 144 | 0.1257 |
 
 
 
 
165
 
166
 
167
  ### Framework versions
 
32
  type: alpaca
33
  dataset_prepared_path:
34
  val_set_size: 0.2
35
+ output_dir: ./qlora-qwen25-instruct-2
36
 
37
+ sequence_len: 2048
38
  sample_packing: true
39
  eval_sample_packing: true
40
  pad_to_sequence_len: true
41
 
42
  adapter: qlora
43
  lora_model_dir:
44
+ lora_r: 32
45
  lora_alpha: 128
46
  lora_dropout: 0.05
47
  lora_target_linear: true
 
54
  wandb_log_model:
55
 
56
  gradient_accumulation_steps: 1
57
+ micro_batch_size: 2
58
+ num_epochs: 3
59
  optimizer: adamw_torch
60
  lr_scheduler: cosine
61
  learning_rate: 0.00002
 
97
  fsdp_sharding_strategy: FULL_SHARD
98
  special_tokens:
99
 
100
+ wandb_project: qlora-qwen-25-7b-instruct
101
  wandb_entity:
102
  wandb_watch:
103
  wandb_name:
 
118
 
119
  This model is a fine-tuned version of [Qwen/Qwen2.5-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-7B-Instruct) on the medalpaca/medical_meadow_medqa dataset.
120
  It achieves the following results on the evaluation set:
121
+ - Loss: 0.1429
122
 
123
  ## Model description
124
 
 
138
 
139
  The following hyperparameters were used during training:
140
  - learning_rate: 2e-05
141
+ - train_batch_size: 2
142
+ - eval_batch_size: 2
143
  - seed: 42
144
  - distributed_type: multi-GPU
145
  - num_devices: 4
146
+ - total_train_batch_size: 8
147
+ - total_eval_batch_size: 8
148
  - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
149
  - lr_scheduler_type: cosine
150
+ - lr_scheduler_warmup_steps: 13
151
+ - num_epochs: 3
152
 
153
  ### Training results
154
 
155
  | Training Loss | Epoch | Step | Validation Loss |
156
  |:-------------:|:-----:|:----:|:---------------:|
157
+ | 0.1255 | 0.25 | 37 | 0.1342 |
158
+ | 0.1201 | 0.5 | 74 | 0.1235 |
159
+ | 0.1227 | 0.75 | 111 | 0.1159 |
160
+ | 0.1289 | 1.0 | 148 | 0.1116 |
161
+ | 0.1004 | 1.25 | 185 | 0.1131 |
162
+ | 0.0783 | 1.5 | 222 | 0.1124 |
163
+ | 0.053 | 1.75 | 259 | 0.1171 |
164
+ | 0.0747 | 2.0 | 296 | 0.1132 |
165
+ | 0.0629 | 2.25 | 333 | 0.1366 |
166
+ | 0.0655 | 2.5 | 370 | 0.1443 |
167
+ | 0.0492 | 2.75 | 407 | 0.1435 |
168
+ | 0.0509 | 3.0 | 444 | 0.1429 |
169
 
170
 
171
  ### Framework versions