Upload Fine_tune_PaliGemma_NoJax.ipynb
Browse files- Fine_tune_PaliGemma_NoJax.ipynb +351 -0
Fine_tune_PaliGemma_NoJax.ipynb
ADDED
@@ -0,0 +1,351 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"nbformat": 4,
|
3 |
+
"nbformat_minor": 0,
|
4 |
+
"metadata": {
|
5 |
+
"colab": {
|
6 |
+
"private_outputs": true,
|
7 |
+
"provenance": [],
|
8 |
+
"machine_shape": "hm",
|
9 |
+
"gpuType": "A100",
|
10 |
+
"include_colab_link": true
|
11 |
+
},
|
12 |
+
"kernelspec": {
|
13 |
+
"name": "python3",
|
14 |
+
"display_name": "Python 3"
|
15 |
+
},
|
16 |
+
"language_info": {
|
17 |
+
"name": "python"
|
18 |
+
},
|
19 |
+
"accelerator": "GPU"
|
20 |
+
},
|
21 |
+
"cells": [
|
22 |
+
{
|
23 |
+
"cell_type": "markdown",
|
24 |
+
"metadata": {
|
25 |
+
"id": "view-in-github",
|
26 |
+
"colab_type": "text"
|
27 |
+
},
|
28 |
+
"source": [
|
29 |
+
"<a href=\"https://colab.research.google.com/github/merveenoyan/smol-vision/blob/main/Fine_tune_PaliGemma.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>"
|
30 |
+
]
|
31 |
+
},
|
32 |
+
{
|
33 |
+
"cell_type": "markdown",
|
34 |
+
"source": [
|
35 |
+
"## PaliGemma Fine-tuning\n",
|
36 |
+
"\n",
|
37 |
+
"In this notebook, we will fine-tune [pretrained PaliGemma](https://huggingface.co/google/paligemma-3b-pt-448) on a small split of [VQAv2](https://huggingface.co/datasets/HuggingFaceM4/VQAv2) dataset. Let's get started by installing necessary libraries."
|
38 |
+
],
|
39 |
+
"metadata": {
|
40 |
+
"id": "m8t6tkjuuONX"
|
41 |
+
}
|
42 |
+
},
|
43 |
+
{
|
44 |
+
"cell_type": "code",
|
45 |
+
"execution_count": null,
|
46 |
+
"metadata": {
|
47 |
+
"id": "FrKEBkmJtMan"
|
48 |
+
},
|
49 |
+
"outputs": [],
|
50 |
+
"source": [
|
51 |
+
"!pip install -q -U git+https://github.com/huggingface/transformers.git datasets accelerate"
|
52 |
+
]
|
53 |
+
},
|
54 |
+
{
|
55 |
+
"cell_type": "markdown",
|
56 |
+
"source": [
|
57 |
+
"We will authenticate to access the model using `notebook_login()`."
|
58 |
+
],
|
59 |
+
"metadata": {
|
60 |
+
"id": "q_85okyYt1eo"
|
61 |
+
}
|
62 |
+
},
|
63 |
+
{
|
64 |
+
"cell_type": "code",
|
65 |
+
"source": [
|
66 |
+
"from huggingface_hub import notebook_login\n",
|
67 |
+
"notebook_login()"
|
68 |
+
],
|
69 |
+
"metadata": {
|
70 |
+
"id": "NzJZSHD8tZZy"
|
71 |
+
},
|
72 |
+
"execution_count": null,
|
73 |
+
"outputs": []
|
74 |
+
},
|
75 |
+
{
|
76 |
+
"cell_type": "markdown",
|
77 |
+
"source": [
|
78 |
+
"Let's load the dataset."
|
79 |
+
],
|
80 |
+
"metadata": {
|
81 |
+
"id": "9_jUBDTEuw1j"
|
82 |
+
}
|
83 |
+
},
|
84 |
+
{
|
85 |
+
"cell_type": "code",
|
86 |
+
"source": [
|
87 |
+
"from datasets import load_dataset\n",
|
88 |
+
"ds = load_dataset('HuggingFaceM4/VQAv2', split=\"train[:10%]\")\n"
|
89 |
+
],
|
90 |
+
"metadata": {
|
91 |
+
"id": "az5kdSbNpjgH"
|
92 |
+
},
|
93 |
+
"execution_count": null,
|
94 |
+
"outputs": []
|
95 |
+
},
|
96 |
+
{
|
97 |
+
"cell_type": "code",
|
98 |
+
"source": [
|
99 |
+
"cols_remove = [\"question_type\", \"answers\", \"answer_type\", \"image_id\", \"question_id\"]\n",
|
100 |
+
"ds = ds.remove_columns(cols_remove)"
|
101 |
+
],
|
102 |
+
"metadata": {
|
103 |
+
"id": "GEsDnBNmppIJ"
|
104 |
+
},
|
105 |
+
"execution_count": null,
|
106 |
+
"outputs": []
|
107 |
+
},
|
108 |
+
{
|
109 |
+
"cell_type": "code",
|
110 |
+
"source": [
|
111 |
+
"split_ds = ds.train_test_split(test_size=0.05) # we'll use a very small split for demo\n",
|
112 |
+
"train_ds = split_ds[\"test\"]"
|
113 |
+
],
|
114 |
+
"metadata": {
|
115 |
+
"id": "wN1c9Aqhqt47"
|
116 |
+
},
|
117 |
+
"execution_count": null,
|
118 |
+
"outputs": []
|
119 |
+
},
|
120 |
+
{
|
121 |
+
"cell_type": "code",
|
122 |
+
"source": [
|
123 |
+
"train_ds"
|
124 |
+
],
|
125 |
+
"metadata": {
|
126 |
+
"id": "TNJW2ty4yy4L"
|
127 |
+
},
|
128 |
+
"execution_count": null,
|
129 |
+
"outputs": []
|
130 |
+
},
|
131 |
+
{
|
132 |
+
"cell_type": "markdown",
|
133 |
+
"source": [
|
134 |
+
"Load the processor to preprocess the dataset."
|
135 |
+
],
|
136 |
+
"metadata": {
|
137 |
+
"id": "OsquATWQu2lJ"
|
138 |
+
}
|
139 |
+
},
|
140 |
+
{
|
141 |
+
"cell_type": "code",
|
142 |
+
"source": [
|
143 |
+
"from transformers import PaliGemmaProcessor\n",
|
144 |
+
"model_id = \"google/paligemma-3b-pt-224\"\n",
|
145 |
+
"processor = PaliGemmaProcessor.from_pretrained(model_id)"
|
146 |
+
],
|
147 |
+
"metadata": {
|
148 |
+
"id": "Zya_PWM3uBWs"
|
149 |
+
},
|
150 |
+
"execution_count": null,
|
151 |
+
"outputs": []
|
152 |
+
},
|
153 |
+
{
|
154 |
+
"cell_type": "markdown",
|
155 |
+
"source": [
|
156 |
+
"We will preprocess our examples. We need to prepare a prompt template and pass the text input inside, pass it with batches of images to processor. Then we will set the pad tokens and image tokens to -100 to let the model ignore them. We will pass our preprocessed input as labels to make the model learn how to generate responses."
|
157 |
+
],
|
158 |
+
"metadata": {
|
159 |
+
"id": "QZROnV-pu7rt"
|
160 |
+
}
|
161 |
+
},
|
162 |
+
{
|
163 |
+
"cell_type": "code",
|
164 |
+
"source": [
|
165 |
+
"import torch\n",
|
166 |
+
"device = \"cuda\"\n",
|
167 |
+
"\n",
|
168 |
+
"image_token = processor.tokenizer.convert_tokens_to_ids(\"<image>\")\n",
|
169 |
+
"def collate_fn(examples):\n",
|
170 |
+
" texts = [\"answer \" + example[\"question\"] for example in examples]\n",
|
171 |
+
" labels= [example['multiple_choice_answer'] for example in examples]\n",
|
172 |
+
" images = [example[\"image\"].convert(\"RGB\") for example in examples]\n",
|
173 |
+
" tokens = processor(text=texts, images=images, suffix=labels,\n",
|
174 |
+
" return_tensors=\"pt\", padding=\"longest\",\n",
|
175 |
+
" tokenize_newline_separately=False)\n",
|
176 |
+
"\n",
|
177 |
+
" tokens = tokens.to(torch.bfloat16).to(device)\n",
|
178 |
+
" return tokens\n"
|
179 |
+
],
|
180 |
+
"metadata": {
|
181 |
+
"id": "hdw3uBcNuGmw"
|
182 |
+
},
|
183 |
+
"execution_count": null,
|
184 |
+
"outputs": []
|
185 |
+
},
|
186 |
+
{
|
187 |
+
"cell_type": "markdown",
|
188 |
+
"source": [
|
189 |
+
"Our dataset is a very general one and similar to many datasets that PaliGemma was trained with. In this case, we do not need to fine-tune the image encoder, the multimodal projector but we will only fine-tune the text decoder."
|
190 |
+
],
|
191 |
+
"metadata": {
|
192 |
+
"id": "Hi_Y1blXwA04"
|
193 |
+
}
|
194 |
+
},
|
195 |
+
{
|
196 |
+
"cell_type": "code",
|
197 |
+
"source": [
|
198 |
+
"from transformers import PaliGemmaForConditionalGeneration\n",
|
199 |
+
"import torch\n",
|
200 |
+
"\n",
|
201 |
+
"model = PaliGemmaForConditionalGeneration.from_pretrained(model_id, torch_dtype=torch.bfloat16).to(device)\n",
|
202 |
+
"\n",
|
203 |
+
"for param in model.vision_tower.parameters():\n",
|
204 |
+
" param.requires_grad = False\n",
|
205 |
+
"\n",
|
206 |
+
"for param in model.multi_modal_projector.parameters():\n",
|
207 |
+
" param.requires_grad = False\n"
|
208 |
+
],
|
209 |
+
"metadata": {
|
210 |
+
"id": "iZRvrfUquH1y"
|
211 |
+
},
|
212 |
+
"execution_count": null,
|
213 |
+
"outputs": []
|
214 |
+
},
|
215 |
+
{
|
216 |
+
"cell_type": "markdown",
|
217 |
+
"source": [
|
218 |
+
"Alternatively, if you want to do LoRA and QLoRA fine-tuning, you can run below cells to load the adapter either in full precision or quantized."
|
219 |
+
],
|
220 |
+
"metadata": {
|
221 |
+
"id": "uCiVI-xUwSJm"
|
222 |
+
}
|
223 |
+
},
|
224 |
+
{
|
225 |
+
"cell_type": "code",
|
226 |
+
"source": [
|
227 |
+
"from transformers import BitsAndBytesConfig\n",
|
228 |
+
"from peft import get_peft_model, LoraConfig\n",
|
229 |
+
"\n",
|
230 |
+
"bnb_config = BitsAndBytesConfig(\n",
|
231 |
+
" load_in_4bit=True,\n",
|
232 |
+
" bnb_4bit_quant_type=\"nf4\",\n",
|
233 |
+
" bnb_4bit_compute_type=torch.bfloat16\n",
|
234 |
+
")\n",
|
235 |
+
"\n",
|
236 |
+
"lora_config = LoraConfig(\n",
|
237 |
+
" r=8,\n",
|
238 |
+
" target_modules=[\"q_proj\", \"o_proj\", \"k_proj\", \"v_proj\", \"gate_proj\", \"up_proj\", \"down_proj\"],\n",
|
239 |
+
" task_type=\"CAUSAL_LM\",\n",
|
240 |
+
")\n",
|
241 |
+
"model = PaliGemmaForConditionalGeneration.from_pretrained(model_id, quantization_config=bnb_config, device_map={\"\":0})\n",
|
242 |
+
"model = get_peft_model(model, lora_config)\n",
|
243 |
+
"model.print_trainable_parameters()\n",
|
244 |
+
"#trainable params: 11,298,816 || all params: 2,934,634,224 || trainable%: 0.38501616002417344\n"
|
245 |
+
],
|
246 |
+
"metadata": {
|
247 |
+
"id": "9AYeuyzNuJ9X"
|
248 |
+
},
|
249 |
+
"execution_count": null,
|
250 |
+
"outputs": []
|
251 |
+
},
|
252 |
+
{
|
253 |
+
"cell_type": "markdown",
|
254 |
+
"source": [
|
255 |
+
"We will now initialize the `TrainingArguments`."
|
256 |
+
],
|
257 |
+
"metadata": {
|
258 |
+
"id": "logv0oLqwbIe"
|
259 |
+
}
|
260 |
+
},
|
261 |
+
{
|
262 |
+
"cell_type": "code",
|
263 |
+
"source": [
|
264 |
+
"from transformers import TrainingArguments\n",
|
265 |
+
"args=TrainingArguments(\n",
|
266 |
+
" num_train_epochs=2,\n",
|
267 |
+
" remove_unused_columns=False,\n",
|
268 |
+
" per_device_train_batch_size=4,\n",
|
269 |
+
" gradient_accumulation_steps=4,\n",
|
270 |
+
" warmup_steps=2,\n",
|
271 |
+
" learning_rate=2e-5,\n",
|
272 |
+
" weight_decay=1e-6,\n",
|
273 |
+
" adam_beta2=0.999,\n",
|
274 |
+
" logging_steps=100,\n",
|
275 |
+
" optim=\"adamw_hf\",\n",
|
276 |
+
" save_strategy=\"steps\",\n",
|
277 |
+
" save_steps=1000,\n",
|
278 |
+
" push_to_hub=True,\n",
|
279 |
+
" save_total_limit=1,\n",
|
280 |
+
" output_dir=\"paligemma_vqav2\",\n",
|
281 |
+
" bf16=True,\n",
|
282 |
+
" report_to=[\"tensorboard\"],\n",
|
283 |
+
" dataloader_pin_memory=False\n",
|
284 |
+
" )\n"
|
285 |
+
],
|
286 |
+
"metadata": {
|
287 |
+
"id": "Il7zKQO9uMPT"
|
288 |
+
},
|
289 |
+
"execution_count": null,
|
290 |
+
"outputs": []
|
291 |
+
},
|
292 |
+
{
|
293 |
+
"cell_type": "markdown",
|
294 |
+
"source": [
|
295 |
+
"We can now start training."
|
296 |
+
],
|
297 |
+
"metadata": {
|
298 |
+
"id": "8pR0EaGlwrDp"
|
299 |
+
}
|
300 |
+
},
|
301 |
+
{
|
302 |
+
"cell_type": "code",
|
303 |
+
"source": [
|
304 |
+
"from transformers import Trainer\n",
|
305 |
+
"\n",
|
306 |
+
"trainer = Trainer(\n",
|
307 |
+
" model=model,\n",
|
308 |
+
" train_dataset=train_ds ,\n",
|
309 |
+
" data_collator=collate_fn,\n",
|
310 |
+
" args=args\n",
|
311 |
+
" )\n"
|
312 |
+
],
|
313 |
+
"metadata": {
|
314 |
+
"id": "CguCGDv1uNkF"
|
315 |
+
},
|
316 |
+
"execution_count": null,
|
317 |
+
"outputs": []
|
318 |
+
},
|
319 |
+
{
|
320 |
+
"cell_type": "code",
|
321 |
+
"source": [
|
322 |
+
"trainer.train()"
|
323 |
+
],
|
324 |
+
"metadata": {
|
325 |
+
"id": "9KFPQLrnF2Ha"
|
326 |
+
},
|
327 |
+
"execution_count": null,
|
328 |
+
"outputs": []
|
329 |
+
},
|
330 |
+
{
|
331 |
+
"cell_type": "code",
|
332 |
+
"source": [
|
333 |
+
"trainer.push_to_hub()"
|
334 |
+
],
|
335 |
+
"metadata": {
|
336 |
+
"id": "O9fMDEjXSSzF"
|
337 |
+
},
|
338 |
+
"execution_count": null,
|
339 |
+
"outputs": []
|
340 |
+
},
|
341 |
+
{
|
342 |
+
"cell_type": "markdown",
|
343 |
+
"source": [
|
344 |
+
"You can find steps to infer [here](https://colab.research.google.com/drive/100IQcvMvGm9y--oelbLfI__eHCoz5Ser?usp=sharing)."
|
345 |
+
],
|
346 |
+
"metadata": {
|
347 |
+
"id": "JohfxEJQjLBd"
|
348 |
+
}
|
349 |
+
}
|
350 |
+
]
|
351 |
+
}
|