File size: 29,537 Bytes
c141d48 1cee3fe c141d48 1cee3fe |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 |
---
library_name: transformers
license: gemma
pipeline_tag: image-text-to-text
extra_gated_heading: Access PaliGemma on Hugging Face
extra_gated_prompt: To access PaliGemma on Hugging Face, you’re required to review
and agree to Google’s usage license. To do this, please ensure you’re logged-in
to Hugging Face and click below. Requests are processed immediately.
extra_gated_button_content: Acknowledge license
---
# PaliGemma model card
**Model page:** [PaliGemma](https://ai.google.dev/gemma/docs/paligemma)
Transformers PaliGemma 3B weights, pre-trained with 224*224 input images and 128 token input/output text sequences. The models are available in float32, bfloat16 and float16 formats for fine-tuning.
**Resources and technical documentation:**
* [Responsible Generative AI Toolkit](https://ai.google.dev/responsible)
* [PaliGemma on Kaggle](https://www.kaggle.com/models/google/paligemma)
* [PaliGemma on Vertex Model Garden](https://console.cloud.google.com/vertex-ai/publishers/google/model-garden/363)
**Terms of Use:** [Terms](https://www.kaggle.com/models/google/paligemma/license/consent/verify/huggingface?returnModelRepoId=google/paligemma-3b-pt-224)
**Authors:** Google
## Model information
### Model summary
#### Description
PaliGemma is a versatile and lightweight vision-language model (VLM) inspired by
[PaLI-3](https://arxiv.org/abs/2310.09199) and based on open components such as
the [SigLIP vision model](https://arxiv.org/abs/2303.15343) and the [Gemma
language model](https://arxiv.org/abs/2403.08295). It takes both image and text
as input and generates text as output, supporting multiple languages. It is designed for class-leading fine-tune performance on a wide range of vision-language tasks such as image and short video caption, visual question answering, text reading, object detection and object segmentation.
#### Model architecture
PaliGemma is the composition of a [Transformer
decoder](https://arxiv.org/abs/1706.03762) and a [Vision Transformer image
encoder](https://arxiv.org/abs/2010.11929), with a total of 3 billion
params. The text decoder is initialized from
[Gemma-2B](https://www.kaggle.com/models/google/gemma). The image encoder is
initialized from
[SigLIP-So400m/14](https://colab.research.google.com/github/google-research/big_vision/blob/main/big_vision/configs/proj/image_text/SigLIP_demo.ipynb).
PaliGemma is trained following the PaLI-3 recipes.
#### Inputs and outputs
* **Input:** Image and text string, such as a prompt to caption the image, or
a question.
* **Output:** Generated text in response to the input, such as a caption of
the image, an answer to a question, a list of object bounding box
coordinates, or segmentation codewords.
### Model data
#### Pre-train datasets
PaliGemma is pre-trained on the following mixture of datasets:
* **WebLI:** [WebLI (Web Language Image)](https://arxiv.org/abs/2209.06794) is
a web-scale multilingual image-text dataset built from the public web. A
wide range of WebLI splits are used to acquire versatile model capabilities,
such as visual semantic understanding, object localization,
visually-situated text understanding, multilinguality, etc.
* **CC3M-35L:** Curated English image-alt_text pairs from webpages ([Sharma et
al., 2018](https://aclanthology.org/P18-1238/)). We used the [Google Cloud
Translation API](https://cloud.google.com/translate) to translate into 34
additional languages.
* **VQ²A-CC3M-35L/VQG-CC3M-35L:** A subset of VQ2A-CC3M ([Changpinyo et al.,
2022a](https://aclanthology.org/2022.naacl-main.142/)), translated into the
same additional 34 languages as CC3M-35L, using the [Google Cloud
Translation API](https://cloud.google.com/translate).
* **OpenImages:** Detection and object-aware questions and answers
([Piergiovanni et al. 2022](https://arxiv.org/abs/2209.04372)) generated by
handcrafted rules on the [OpenImages dataset].
* **WIT:** Images and texts collected from Wikipedia ([Srinivasan et al.,
2021](https://arxiv.org/abs/2103.01913)).
[OpenImages dataset]: https://storage.googleapis.com/openimages/web/factsfigures_v7.html
#### Data responsibility filtering
The following filters are applied to WebLI, with the goal of training PaliGemma
on clean data:
* **Pornographic image filtering:** This filter removes images deemed to be of
pornographic nature.
* **Text safety filtering:** We identify and filter out images that are paired
with unsafe text. Unsafe text is any text deemed to contain or be about
CSAI, pornography, vulgarities, or otherwise offensive.
* **Text toxicity filtering:** We further use the [Perspective
API](https://perspectiveapi.com/) to identify and filter out images that are
paired with text deemed insulting, obscene, hateful or otherwise toxic.
* **Text personal information filtering:** We filtered certain personal information and other sensitive data using [Cloud Data Loss Prevention (DLP)
API](https://cloud.google.com/security/products/dlp) to protect the privacy
of individuals. Identifiers such as social security numbers and [other sensitive information types] were removed.
* **Additional methods:** Filtering based on content quality and safety in
line with our policies and practices.
[other sensitive information types]: https://cloud.google.com/sensitive-data-protection/docs/high-sensitivity-infotypes-reference?_gl=1*jg604m*_ga*ODk5MzA3ODQyLjE3MTAzMzQ3NTk.*_ga_WH2QY8WWF5*MTcxMDUxNTkxMS4yLjEuMTcxMDUxNjA2NC4wLjAuMA..&_ga=2.172110058.-899307842.1710334759
## How to Use
PaliGemma is a single-turn vision language model not meant for conversational use,
and it works best when fine-tuning to a specific use case.
You can configure which task the model will solve by conditioning it with task prefixes,
such as “detect” or “segment”. The pretrained models were trained in this fashion to imbue
them with a rich set of capabilities (question answering, captioning, segmentation, etc.).
However, they are not designed to be used directly, but to be transferred (by fine-tuning)
to specific tasks using a similar prompt structure. For interactive testing, you can use
the "mix" family of models, which have been fine-tuned on a mixture of tasks. To see model
[google/paligemma-3b-mix-448](https://huggingface.co/google/paligemma-3b-mix-448) in action,
check [this Space that uses the Transformers codebase](https://huggingface.co/spaces/big-vision/paligemma-hf).
Please, refer to the [usage and limitations section](#usage-and-limitations) for intended
use cases, or visit the [blog post](https://huggingface.co/blog/paligemma) for
additional details and examples.
## Use in Transformers
The following snippets use model `google/paligemma-3b-mix-224` for reference purposes.
The model in this repo you are now browsing may have been trained for other tasks, please
make sure you use appropriate inputs for the task at hand.
### Running the default precision (`float32`) on CPU
```python
from transformers import AutoProcessor, PaliGemmaForConditionalGeneration
from PIL import Image
import requests
import torch
model_id = "google/paligemma-3b-mix-224"
url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/car.jpg?download=true"
image = Image.open(requests.get(url, stream=True).raw)
model = PaliGemmaForConditionalGeneration.from_pretrained(model_id).eval()
processor = AutoProcessor.from_pretrained(model_id)
# Instruct the model to create a caption in Spanish
prompt = "caption es"
model_inputs = processor(text=prompt, images=image, return_tensors="pt")
input_len = model_inputs["input_ids"].shape[-1]
with torch.inference_mode():
generation = model.generate(**model_inputs, max_new_tokens=100, do_sample=False)
generation = generation[0][input_len:]
decoded = processor.decode(generation, skip_special_tokens=True)
print(decoded)
```
Output: `Un auto azul estacionado frente a un edificio.`
### Running other precisions on CUDA
For convenience, the repos contain revisions of the weights already converted to `bfloat16` and `float16`,
so you can use them to reduce the download size and avoid casting on your local computer.
This is how you'd run `bfloat16` on an nvidia CUDA card.
```python
from transformers import AutoProcessor, PaliGemmaForConditionalGeneration
from PIL import Image
import requests
import torch
model_id = "google/paligemma-3b-mix-224"
device = "cuda:0"
dtype = torch.bfloat16
url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/car.jpg?download=true"
image = Image.open(requests.get(url, stream=True).raw)
model = PaliGemmaForConditionalGeneration.from_pretrained(
model_id,
torch_dtype=dtype,
device_map=device,
revision="bfloat16",
).eval()
processor = AutoProcessor.from_pretrained(model_id)
# Instruct the model to create a caption in Spanish
prompt = "caption es"
model_inputs = processor(text=prompt, images=image, return_tensors="pt").to(model.device)
input_len = model_inputs["input_ids"].shape[-1]
with torch.inference_mode():
generation = model.generate(**model_inputs, max_new_tokens=100, do_sample=False)
generation = generation[0][input_len:]
decoded = processor.decode(generation, skip_special_tokens=True)
print(decoded)
```
### Loading in 4-bit / 8-bit
You need to install `bitsandbytes` to automatically run inference using 8-bit or 4-bit precision:
```
pip install bitsandbytes accelerate
```
```
from transformers import AutoProcessor, PaliGemmaForConditionalGeneration, BitsAndBytesConfig
from PIL import Image
import requests
import torch
model_id = "google/paligemma-3b-mix-224"
device = "cuda:0"
dtype = torch.bfloat16
url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/car.jpg?download=true"
image = Image.open(requests.get(url, stream=True).raw)
quantization_config = BitsAndBytesConfig(load_in_8bit=True)
model = PaliGemmaForConditionalGeneration.from_pretrained(
model_id, quantization_config=quantization_config
).eval()
processor = AutoProcessor.from_pretrained(model_id)
# Instruct the model to create a caption in Spanish
prompt = "caption es"
model_inputs = processor(text=prompt, images=image, return_tensors="pt").to(model.device)
input_len = model_inputs["input_ids"].shape[-1]
with torch.inference_mode():
generation = model.generate(**model_inputs, max_new_tokens=100, do_sample=False)
generation = generation[0][input_len:]
decoded = processor.decode(generation, skip_special_tokens=True)
print(decoded)
```
## Implementation information
### Hardware
PaliGemma was trained using the latest generation of Tensor Processing Unit
(TPU) hardware (TPUv5e).
### Software
Training was done using [JAX](https://github.com/google/jax),
[Flax](https://github.com/google/flax),
[TFDS](https://github.com/tensorflow/datasets) and
[`big_vision`](https://github.com/google-research/big_vision).
JAX allows researchers to take advantage of the latest generation of hardware,
including TPUs, for faster and more efficient training of large models.
TFDS is used to access datasets and Flax is used for model architecture. The
PaliGemma fine-tune code and inference code are released in the `big_vision`
GitHub repository.
## Evaluation information
### Benchmark results
In order to verify the transferability of PaliGemma to a wide variety of
academic tasks, we fine-tune the pretrained models on each task. Additionally we
train the mix model with a mixture of the transfer tasks. We report results on
different resolutions to provide an impression of which tasks benefit from
increased resolution. Importantly, none of these tasks or datasets are part of
the pretraining data mixture, and their images are explicitly removed from the
web-scale pre-training data.
#### Single task (fine-tune on single task)
<table>
<tbody><tr>
<th>Benchmark<br>(train split)</th>
<th>Metric<br>(split)</th>
<th>pt-224</th>
<th>pt-448</th>
<th>pt-896</th>
</tr>
<tr>
<th>Captioning</th>
</tr>
<tr>
<td>
<a href="https://cocodataset.org/#home">COCO captions</a><br>(train+restval)
</td>
<td>CIDEr (val)</td>
<td>141.92</td>
<td>144.60</td>
</tr>
<tr>
<td>
<a href="https://nocaps.org/">NoCaps</a><br>(Eval of COCO<br>captions transfer)
</td>
<td>CIDEr (val)</td>
<td>121.72</td>
<td>123.58</td>
</tr>
<tr>
<td>
<a href="https://arxiv.org/pdf/2205.12522">COCO-35L</a><br>(train)
</td>
<td>CIDEr dev<br>(en/avg-34/avg)</td>
<td>
139.2<br>
115.8<br>
116.4
</td>
<td>
141.2<br>
118.0<br>
118.6
</td>
</tr>
<tr>
<td>
<a href="https://arxiv.org/pdf/2205.12522">XM3600</a><br>(Eval of COCO-35L transfer)
</td>
<td>CIDEr dev<br>(en/avg-34/avg)</td>
<td>
78.1<br>
41.3<br>
42.4
</td>
<td>
80.0<br>
41.9<br>
42.9
</td>
</tr>
<tr>
<td>
<a href="https://textvqa.org/textcaps/">TextCaps</a><br>(train)
</td>
<td>CIDEr (val)</td>
<td>127.48</td>
<td>153.94</td>
</tr>
<tr>
<td>
<a href="https://arxiv.org/abs/2110.11624">SciCap</a><br>(first sentence, no subfigure)<br>(train+val)
</td>
<td>CIDEr/BLEU-4<br>(test)</td>
<td>
162.25<br>
0.192<br>
</td>
<td>
181.49<br>
0.211<br>
</td>
</tr>
<tr>
<td>
<a href="https://arxiv.org/abs/2108.03353">Screen2words</a><br>(train+dev)
</td>
<td>CIDEr (test)</td>
<td>117.57</td>
<td>119.59</td>
</tr>
<tr>
<td>
<a href="https://arxiv.org/abs/2010.04295">Widget Captioning</a><br>(train+dev)
</td>
<td>CIDEr (test)</td>
<td>136.07</td>
<td>148.36</td>
</tr>
<tr>
<th>Question answering</th>
</tr>
<tr>
<td>
<a href="https://visualqa.org/index.html">VQAv2</a><br>(train+validation)
</td>
<td>Accuracy<br>(Test server - std)</td>
<td>83.19</td>
<td>85.64</td>
</tr>
<tr>
<td>
<a href="https://arxiv.org/abs/2401.06209">MMVP</a><br>(Eval of VQAv2 transfer)
</td>
<td>Paired Accuracy</td>
<td>47.33</td>
<td>45.33</td>
</tr>
<tr>
<td>
<a href="https://arxiv.org/abs/2305.10355">POPE</a><br>(Eval of VQAv2 transfer)
</td>
<td>Accuracy<br>(random/popular/<br>adversarial)</td>
<td>
87.80<br>
85.87<br>
84.27
</td>
<td>
88.23<br>
86.77<br>
85.90
</td>
</tr>
<tr>
<td>
<a href="https://okvqa.allenai.org/">OKVQA</a><br>(train)
</td>
<td>Accuracy (val)</td>
<td>63.54</td>
<td>63.15</td>
</tr>
<tr>
<td>
<a href="https://allenai.org/project/a-okvqa/home">A-OKVQA</a> (MC)<br>(train+val)
</td>
<td>Accuracy<br>(Test server)</td>
<td>76.37</td>
<td>76.90</td>
</tr>
<tr>
<td>
<a href="https://allenai.org/project/a-okvqa/home">A-OKVQA</a> (DA)<br>(train+val)
</td>
<td>Accuracy<br>(Test server)</td>
<td>61.85</td>
<td>63.22</td>
</tr>
<tr>
<td>
<a href="https://cs.stanford.edu/people/dorarad/gqa/about.html">GQA</a><br>(train_balanced+<br>val_balanced)
</td>
<td>Accuracy<br>(testdev balanced)</td>
<td>65.61</td>
<td>67.03</td>
</tr>
<tr>
<td>
<a href="https://aclanthology.org/2022.findings-acl.196/">xGQA</a><br>(Eval of GQA transfer)
</td>
<td>Mean Accuracy<br>(bn, de, en, id,<br>ko, pt, ru, zh)</td>
<td>58.37</td>
<td>59.07</td>
</tr>
<tr>
<td>
<a href="https://lil.nlp.cornell.edu/nlvr/">NLVR2</a><br>(train+dev)
</td>
<td>Accuracy (test)</td>
<td>90.02</td>
<td>88.93</td>
</tr>
<tr>
<td>
<a href="https://marvl-challenge.github.io/">MaRVL</a><br>(Eval of NLVR2 transfer)
</td>
<td>Mean Accuracy<br>(test)<br>(id, sw, ta, tr, zh)</td>
<td>80.57</td>
<td>76.78</td>
</tr>
<tr>
<td>
<a href="https://allenai.org/data/diagrams">AI2D</a><br>(train)
</td>
<td>Accuracy (test)</td>
<td>72.12</td>
<td>73.28</td>
</tr>
<tr>
<td>
<a href="https://scienceqa.github.io/">ScienceQA</a><br>(Img subset, no CoT)<br>(train+val)
</td>
<td>Accuracy (test)</td>
<td>95.39</td>
<td>95.93</td>
</tr>
<tr>
<td>
<a href="https://zenodo.org/records/6344334">RSVQA-LR</a> (Non numeric)<br>(train+val)
</td>
<td>Mean Accuracy<br>(test)</td>
<td>92.65</td>
<td>93.11</td>
</tr>
<tr>
<td>
<a href="https://zenodo.org/records/6344367">RSVQA-HR</a> (Non numeric)<br>(train+val)
</td>
<td>Mean Accuracy<br>(test/test2)</td>
<td>
92.61<br>
90.58
</td>
<td>
92.79<br>
90.54
</td>
</tr>
<tr>
<td>
<a href="https://arxiv.org/abs/2203.10244">ChartQA</a><br>(human+aug)x(train+val)
</td>
<td>Mean Relaxed<br>Accuracy<br>(test_human,<br>test_aug)</td>
<td>57.08</td>
<td>71.36</td>
</tr>
<tr>
<td>
<a href="https://vizwiz.org/tasks-and-datasets/vqa/">VizWiz VQA</a><br>(train+val)
</td>
<td>Accuracy<br>(Test server - std)</td>
<td>
73.7
</td>
<td>
75.52
</td>
</tr>
<tr>
<td>
<a href="https://arxiv.org/abs/1810.12440">TallyQA</a><br>(train)
</td>
<td>Accuracy<br>(test_simple/<br>test_complex)</td>
<td>
81.72<br>
69.56
</td>
<td>
84.86<br>
72.27
</td>
</tr>
<tr>
<td>
<a href="https://ocr-vqa.github.io/">OCR-VQA</a><br>(train+val)
</td>
<td>Accuracy (test)</td>
<td>72.32</td>
<td>74.61</td>
<td>74.93</td>
</tr>
<tr>
<td>
<a href="https://textvqa.org/">TextVQA</a><br>(train+val)
</td>
<td>Accuracy<br>(Test server - std)</td>
<td>55.47</td>
<td>73.15</td>
<td>76.48</td>
</tr>
<tr>
<td>
<a href="https://www.docvqa.org/">DocVQA</a><br>(train+val)
</td>
<td>ANLS (Test server)</td>
<td>43.74</td>
<td>78.02</td>
<td>84.77</td>
</tr>
<tr>
<td>
<a href="https://openaccess.thecvf.com/content/WACV2022/papers/Mathew_InfographicVQA_WACV_2022_paper.pdf">Infographic VQA</a><br>(train+val)
</td>
<td>ANLS (Test server)</td>
<td>28.46</td>
<td>40.47</td>
<td>47.75</td>
</tr>
<tr>
<td>
<a href="https://arxiv.org/abs/1905.13648">SceneText VQA</a><br>(train+val)
</td>
<td>ANLS (Test server)</td>
<td>63.29</td>
<td>81.82</td>
<td>84.40</td>
</tr>
<tr>
<th>Segmentation</th>
</tr>
<tr>
<td>
<a href="https://arxiv.org/abs/1608.00272">RefCOCO</a><br>(combined refcoco, refcoco+,<br>refcocog excluding val<br>and test images)
</td>
<td>MIoU<br>(validation)<br>refcoco/refcoco+/<br>refcocog</td>
<td>
73.40<br>
68.32<br>
67.65
</td>
<td>
75.57<br>
69.76<br>
70.17
</td>
<td>
76.94<br>
72.18<br>
72.22
</td>
</tr>
<tr>
<th>Video tasks (Caption/QA)</th>
</tr>
<tr>
<td>MSR-VTT (Captioning)</td>
<td>CIDEr (test)</td>
<td>70.54</td>
</tr>
<tr>
<td>MSR-VTT (QA)</td>
<td>Accuracy (test)</td>
<td>50.09</td>
</tr>
<tr>
<td>ActivityNet (Captioning)</td>
<td>CIDEr (test)</td>
<td>34.62</td>
</tr>
<tr>
<td>ActivityNet (QA)</td>
<td>Accuracy (test)</td>
<td>50.78</td>
</tr>
<tr>
<td>VATEX (Captioning)</td>
<td>CIDEr (test)</td>
<td>79.73</td>
</tr>
<tr>
<td>MSVD (QA)</td>
<td>Accuracy (test)</td>
<td>60.22</td>
</tr>
</tbody></table>
#### Mix model (fine-tune on mixture of transfer tasks)
<table>
<tbody><tr>
<th>Benchmark</th>
<th>Metric (split)</th>
<th>mix-224</th>
<th>mix-448</th>
</tr>
<tr>
<td><a href="https://arxiv.org/abs/2401.06209">MMVP</a></td>
<td>Paired Accuracy</td>
<td>46.00</td>
<td>45.33</td>
</tr>
<tr>
<td><a href="https://arxiv.org/abs/2305.10355">POPE</a></td>
<td>Accuracy<br>(random/popular/adversarial)</td>
<td>
88.00<br>
86.63<br>
85.67
</td>
<td>
89.37<br>
88.40<br>
87.47
</td>
</tr>
</tbody></table>
## Ethics and safety
### Evaluation approach
Our evaluation methods include structured evaluations and internal red-teaming
testing of relevant content policies. Red-teaming was conducted by a number of
different teams, each with different goals and human evaluation metrics. These
models were evaluated against a number of different categories relevant to
ethics and safety, including:
* Human evaluation on prompts covering child safety, content safety and
representational harms. See the [Gemma model
card](https://ai.google.dev/gemma/docs/model_card#evaluation_approach) for
more details on evaluation approach, but with image captioning and visual
question answering setups.
* Image-to-Text benchmark evaluation: Benchmark against relevant academic
datasets such as FairFace Dataset ([Karkkainen et al.,
2021](https://arxiv.org/abs/1908.04913)).
### Evaluation results
* The human evaluation results of ethics and safety evaluations are within
acceptable thresholds for meeting [internal
policies](https://storage.googleapis.com/gweb-uniblog-publish-prod/documents/2023_Google_AI_Principles_Progress_Update.pdf#page=11)
for categories such as child safety, content safety and representational
harms.
* On top of robust internal evaluations, we also use the Perspective API
(threshold of 0.8) to measure toxicity, profanity, and other potential
issues in the generated captions for images sourced from the FairFace
dataset. We report the maximum and median values observed across subgroups
for each of the perceived gender, ethnicity, and age attributes.
<table>
<tbody><tr>
</tr></tbody><tbody><tr><th>Metric</th>
<th>Perceived<br>gender</th>
<th></th>
<th>Ethnicity</th>
<th></th>
<th>Age group</th>
<th></th>
</tr>
<tr>
<th></th>
<th>Maximum</th>
<th>Median</th>
<th>Maximum</th>
<th>Median</th>
<th>Maximum</th>
<th>Median</th>
</tr>
<tr>
<td>Toxicity</td>
<td>0.04%</td>
<td>0.03%</td>
<td>0.08%</td>
<td>0.00%</td>
<td>0.09%</td>
<td>0.00%</td>
</tr>
<tr>
<td>Identity Attack</td>
<td>0.00%</td>
<td>0.00%</td>
<td>0.00%</td>
<td>0.00%</td>
<td>0.00%</td>
<td>0.00%</td>
</tr>
<tr>
<td>Insult</td>
<td>0.06%</td>
<td>0.04%</td>
<td>0.09%</td>
<td>0.07%</td>
<td>0.16%</td>
<td>0.00%</td>
</tr>
<tr>
<td>Threat</td>
<td>0.06%</td>
<td>0.05%</td>
<td>0.14%</td>
<td>0.05%</td>
<td>0.17%</td>
<td>0.00%</td>
</tr>
<tr>
<td>Profanity</td>
<td>0.00%</td>
<td>0.00%</td>
<td>0.00%</td>
<td>0.00%</td>
<td>0.00%</td>
<td>0.00%</td>
</tr>
</tbody></table>
## Usage and limitations
### Intended usage
Open Vision Language Models (VLMs) have a wide range of applications across
various industries and domains. The following list of potential uses is not
comprehensive. The purpose of this list is to provide contextual information
about the possible use-cases that the model creators considered as part of model
training and development.
Fine-tune on specific vision-language task:
* The pre-trained models can be fine-tuned on a wide range of vision-language
tasks such as: image captioning, short video caption, visual question
answering, text reading, object detection and object segmentation.
* The pre-trained models can be fine-tuned for specific domains such as remote
sensing question answering, visual questions from people who are blind,
science question answering, describe UI element functionalities.
* The pre-trained models can be fine-tuned for tasks with non-textual outputs
such as bounding boxes or segmentation masks.
Vision-language research:
* The pre-trained models and fine-tuned models can serve as a foundation for researchers to experiment with VLM
techniques, develop algorithms, and contribute to the advancement of the
field.
### Ethical considerations and risks
The development of vision-language models (VLMs) raises several ethical concerns. In creating an open model, we have carefully considered the following:
* Bias and Fairness
* VLMs trained on large-scale, real-world image-text data can reflect socio-cultural biases embedded in the training material. These models underwent careful scrutiny, input data pre-processing described and posterior evaluations reported in this card.
* Misinformation and Misuse
* VLMs can be misused to generate text that is false, misleading, or harmful.
* Guidelines are provided for responsible use with the model, see the [Responsible Generative AI Toolkit](https://ai.google.dev/responsible).
* Transparency and Accountability
* This model card summarizes details on the models' architecture, capabilities, limitations, and evaluation processes.
* A responsibly developed open model offers the opportunity to share innovation by making VLM technology accessible to developers and researchers across the AI ecosystem.
Risks identified and mitigations:
* **Perpetuation of biases:** It's encouraged to perform continuous monitoring
(using evaluation metrics, human review) and the exploration of de-biasing
techniques during model training, fine-tuning, and other use cases.
* **Generation of harmful content:** Mechanisms and guidelines for content
safety are essential. Developers are encouraged to exercise caution and
implement appropriate content safety safeguards based on their specific
product policies and application use cases.
* **Misuse for malicious purposes:** Technical limitations and developer and
end-user education can help mitigate against malicious applications of LLMs.
Educational resources and reporting mechanisms for users to flag misuse are
provided. Prohibited uses of Gemma models are outlined in the [Gemma
Prohibited Use Policy](https://ai.google.dev/gemma/prohibited_use_policy).
* **Privacy violations:** Models were trained on data filtered to remove certain personal information and sensitive data. Developers are encouraged to adhere to privacy regulations with privacy-preserving techniques.
### Limitations
* Most limitations inherited from the underlying Gemma model still apply:
* VLMs are better at tasks that can be framed with clear prompts and
instructions. Open-ended or highly complex tasks might be challenging.
* Natural language is inherently complex. VLMs might struggle to grasp
subtle nuances, sarcasm, or figurative language.
* VLMs generate responses based on information they learned from their
training datasets, but they are not knowledge bases. They may generate
incorrect or outdated factual statements.
* VLMs rely on statistical patterns in language and images. They might
lack the ability to apply common sense reasoning in certain situations.
* PaliGemma was designed first and foremost to serve as a general pre-trained
model for transfer to specialized tasks. Hence, its "out of the box" or
"zero-shot" performance might lag behind models designed specifically for
that.
* PaliGemma is not a multi-turn chatbot. It is designed for a single round of
image and text input.
## Citation
```bibtex
@article{beyer2024paligemma,
title={{PaliGemma: A versatile 3B VLM for transfer}},
author={Lucas Beyer* and Andreas Steiner* and André Susano Pinto* and Alexander Kolesnikov* and Xiao Wang* and Daniel Salz and Maxim Neumann and Ibrahim Alabdulmohsin and Michael Tschannen and Emanuele Bugliarello and Thomas Unterthiner and Daniel Keysers and Skanda Koppula and Fangyu Liu and Adam Grycner and Alexey Gritsenko and Neil Houlsby and Manoj Kumar and Keran Rong and Julian Eisenschlos and Rishabh Kabra and Matthias Bauer and Matko Bošnjak and Xi Chen and Matthias Minderer and Paul Voigtlaender and Ioana Bica and Ivana Balazevic and Joan Puigcerver and Pinelopi Papalampidi and Olivier Henaff and Xi Xiong and Radu Soricut and Jeremiah Harmsen and Xiaohua Zhai*},
year={2024},
journal={arXiv preprint arXiv:2407.07726}
}
```
Find the paper [here](https://arxiv.org/abs/2407.07726).
|