--- license: mit base_model: microsoft/deberta-v3-base tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: deberta-v3-base-orgs-v2 results: [] --- # deberta-v3-base-orgs-v2 This model is a fine-tuned version of [microsoft/deberta-v3-base](https://huggingface.co/microsoft/deberta-v3-base) on the None dataset. It achieves the following results on the evaluation set: - Accuracy: 0.9632 - F1: 0.7927 - Loss: 0.1186 - Precision: 0.8127 - Recall: 0.7735 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 256 - eval_batch_size: 256 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 20 - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Accuracy | F1 | Validation Loss | Precision | Recall | |:-------------:|:-----:|:----:|:--------:|:------:|:---------------:|:---------:|:------:| | 0.0706 | 0.7 | 600 | 0.9602 | 0.7690 | 0.1138 | 0.7590 | 0.7793 | | 0.0526 | 1.4 | 1200 | 0.9617 | 0.7870 | 0.1113 | 0.7942 | 0.7799 | | 0.0409 | 2.11 | 1800 | 0.9627 | 0.7875 | 0.1125 | 0.7911 | 0.7839 | | 0.0376 | 2.81 | 2400 | 0.9632 | 0.7927 | 0.1186 | 0.8127 | 0.7735 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0a0+32f93b1 - Datasets 2.15.0 - Tokenizers 0.15.0