--- license: apache-2.0 library_name: transformers base_model: - mistralai/Mistral-Nemo-Instruct-2407 datasets: - tasksource/ScienceQA_text_only model-index: - name: mistral-nemo-wissenschaft-12B results: - task: type: text-generation name: Text Generation dataset: name: IFEval (0-Shot) type: HuggingFaceH4/ifeval args: num_few_shot: 0 metrics: - type: inst_level_strict_acc and prompt_level_strict_acc value: 65.2 name: strict accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=nbeerbower/mistral-nemo-wissenschaft-12B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: BBH (3-Shot) type: BBH args: num_few_shot: 3 metrics: - type: acc_norm value: 29.57 name: normalized accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=nbeerbower/mistral-nemo-wissenschaft-12B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MATH Lvl 5 (4-Shot) type: hendrycks/competition_math args: num_few_shot: 4 metrics: - type: exact_match value: 6.57 name: exact match source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=nbeerbower/mistral-nemo-wissenschaft-12B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GPQA (0-shot) type: Idavidrein/gpqa args: num_few_shot: 0 metrics: - type: acc_norm value: 5.7 name: acc_norm source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=nbeerbower/mistral-nemo-wissenschaft-12B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MuSR (0-shot) type: TAUR-Lab/MuSR args: num_few_shot: 0 metrics: - type: acc_norm value: 12.29 name: acc_norm source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=nbeerbower/mistral-nemo-wissenschaft-12B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU-PRO (5-shot) type: TIGER-Lab/MMLU-Pro config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 28.14 name: accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=nbeerbower/mistral-nemo-wissenschaft-12B name: Open LLM Leaderboard --- # mistral-nemo-wissenschaft-12B [mistralai/Mistral-Nemo-Instruct-2407](https://huggingface.co/mistralai/Mistral-Nemo-Instruct-2407) finetuned on [tasksource/ScienceQA_text_only](https://huggingface.co/datasets/tasksource/ScienceQA_text_only). ### Method Finetuned using an A100 on Google Colab for 1 epoch. Correct answers were selected as the chosen answer, a random wrong answer was selected as "rejected." [Fine-tune Llama 3 with ORPO](https://mlabonne.github.io/blog/posts/2024-04-19_Fine_tune_Llama_3_with_ORPO.html) # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_nbeerbower__mistral-nemo-wissenschaft-12B) | Metric |Value| |-------------------|----:| |Avg. |24.58| |IFEval (0-Shot) |65.20| |BBH (3-Shot) |29.57| |MATH Lvl 5 (4-Shot)| 6.57| |GPQA (0-shot) | 5.70| |MuSR (0-shot) |12.29| |MMLU-PRO (5-shot) |28.14|