File size: 3,867 Bytes
feadf28 2b6df0c feadf28 2480f99 2b6df0c feadf28 2480f99 feadf28 2480f99 feadf28 2480f99 feadf28 2480f99 feadf28 2b6df0c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 |
---
license: apache-2.0
library_name: transformers
base_model:
- mistralai/Mistral-Nemo-Instruct-2407
datasets:
- tasksource/ScienceQA_text_only
model-index:
- name: mistral-nemo-wissenschaft-12B
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: IFEval (0-Shot)
type: HuggingFaceH4/ifeval
args:
num_few_shot: 0
metrics:
- type: inst_level_strict_acc and prompt_level_strict_acc
value: 65.2
name: strict accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=nbeerbower/mistral-nemo-wissenschaft-12B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: BBH (3-Shot)
type: BBH
args:
num_few_shot: 3
metrics:
- type: acc_norm
value: 29.57
name: normalized accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=nbeerbower/mistral-nemo-wissenschaft-12B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MATH Lvl 5 (4-Shot)
type: hendrycks/competition_math
args:
num_few_shot: 4
metrics:
- type: exact_match
value: 6.57
name: exact match
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=nbeerbower/mistral-nemo-wissenschaft-12B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GPQA (0-shot)
type: Idavidrein/gpqa
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 5.7
name: acc_norm
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=nbeerbower/mistral-nemo-wissenschaft-12B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MuSR (0-shot)
type: TAUR-Lab/MuSR
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 12.29
name: acc_norm
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=nbeerbower/mistral-nemo-wissenschaft-12B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU-PRO (5-shot)
type: TIGER-Lab/MMLU-Pro
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 28.14
name: accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=nbeerbower/mistral-nemo-wissenschaft-12B
name: Open LLM Leaderboard
---
# mistral-nemo-wissenschaft-12B
[mistralai/Mistral-Nemo-Instruct-2407](https://huggingface.co/mistralai/Mistral-Nemo-Instruct-2407) finetuned on [tasksource/ScienceQA_text_only](https://huggingface.co/datasets/tasksource/ScienceQA_text_only).
### Method
Finetuned using an A100 on Google Colab for 1 epoch. Correct answers were selected as the chosen answer, a random wrong answer was selected as "rejected."
[Fine-tune Llama 3 with ORPO](https://mlabonne.github.io/blog/posts/2024-04-19_Fine_tune_Llama_3_with_ORPO.html)
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_nbeerbower__mistral-nemo-wissenschaft-12B)
| Metric |Value|
|-------------------|----:|
|Avg. |24.58|
|IFEval (0-Shot) |65.20|
|BBH (3-Shot) |29.57|
|MATH Lvl 5 (4-Shot)| 6.57|
|GPQA (0-shot) | 5.70|
|MuSR (0-shot) |12.29|
|MMLU-PRO (5-shot) |28.14|
|