File size: 2,197 Bytes
414f455 a959cf3 414f455 9b6b447 414f455 9b6b447 414f455 8036be3 414f455 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 |
---
license: mit
tags:
- donut
- image-to-text
- vision
---
# Donut (base-sized model, pre-trained only)
Donut model pre-trained-only. It was introduced in the paper [OCR-free Document Understanding Transformer](https://arxiv.org/abs/2111.15664) by Geewok et al. and first released in [this repository](https://github.com/clovaai/donut).
Disclaimer: The team releasing Donut did not write a model card for this model so this model card has been written by the Hugging Face team.
## Model description
Donut consists of a vision encoder (Swin Transformer) and a text decoder (BART). Given an image, the encoder first encodes the image into a tensor of embeddings (of shape batch_size, seq_len, hidden_size), after which the decoder autoregressively generates text, conditioned on the encoding of the encoder.
![model image](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/model_doc/donut_architecture.jpg)
## Intended uses & limitations
This model is meant to be fine-tuned on a downstream task, like document image classification or document parsing. See the [model hub](https://huggingface.co/models?search=donut) to look for fine-tuned versions on a task that interests you.
### How to use
We refer to the [documentation](https://huggingface.co/docs/transformers/main/en/model_doc/donut) which includes code examples.
### BibTeX entry and citation info
```bibtex
@article{DBLP:journals/corr/abs-2111-15664,
author = {Geewook Kim and
Teakgyu Hong and
Moonbin Yim and
Jinyoung Park and
Jinyeong Yim and
Wonseok Hwang and
Sangdoo Yun and
Dongyoon Han and
Seunghyun Park},
title = {Donut: Document Understanding Transformer without {OCR}},
journal = {CoRR},
volume = {abs/2111.15664},
year = {2021},
url = {https://arxiv.org/abs/2111.15664},
eprinttype = {arXiv},
eprint = {2111.15664},
timestamp = {Thu, 02 Dec 2021 10:50:44 +0100},
biburl = {https://dblp.org/rec/journals/corr/abs-2111-15664.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
``` |