natolambert
commited on
Commit
·
3888820
1
Parent(s):
da55df7
Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Model for testing RM scripts
|
2 |
+
This model is just GPT2 base (~100M param) with a value head appended, untrained.
|
3 |
+
Use this for debugging RLHF setups (could make a smaller one too).
|
4 |
+
The predictions should be somewhat random.
|
5 |
+
|
6 |
+
Load the model as follows:
|
7 |
+
```
|
8 |
+
from transformers import AutoModelForSequenceClassification
|
9 |
+
rm = AutoModelForSequenceClassification.from_pretrained("natolambert/gpt2-dummy-rm")
|
10 |
+
```
|
11 |
+
or as a pipeline
|
12 |
+
```
|
13 |
+
from Transformers import pipeline
|
14 |
+
reward_pipe = pipeline(
|
15 |
+
"text-classification",
|
16 |
+
model="natolambert/gpt2-dummy-rm",
|
17 |
+
# revision=args.model_revision,
|
18 |
+
# model_kwargs={"load_in_8bit": True, "device_map": {"": current_device}, "torch_dtype": torch.float16},
|
19 |
+
)
|
20 |
+
reward_pipeline_kwargs = {}
|
21 |
+
pipe_outputs = reward_pipe(texts, **reward_pipeline_kwargs)
|
22 |
+
```
|
23 |
+
|
24 |
+
|
25 |
+
|
26 |
+
|
27 |
+
|