File size: 7,656 Bytes
8fcb3b6 4e9403d 8fcb3b6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 |
---
language: en
license: mit
library_name: transformers
tags:
- video-classification
- videomae
- vision
---
# Model Card for videomae-base-finetuned-ucf101
A [WandB report here](https://wandb.ai/nateraw/videomae-finetune-ucf101/reports/Fine-Tuning-VideoMAE-Base-on-UCF101--VmlldzoyOTUwMjk4) for metrics.
# Table of Contents
1. [Model Details](#model-details)
2. [Uses](#uses)
3. [Bias, Risks, and Limitations](#bias-risks-and-limitations)
4. [Training Details](#training-details)
5. [Evaluation](#evaluation)
6. [Model Examination](#model-examination-optional)
7. [Environmental Impact](#environmental-impact)
8. [Technical Specifications](#technical-specifications-optional)
9. [Citation](#citation-optional)
10. [Glossary](#glossary-optional)
11. [More Information](#more-information-optional)
12. [Model Card Authors](#model-card-authors-optional)
13. [Model Card Contact](#model-card-contact)
14. [How To Get Started With the Model](#how-to-get-started-with-the-model)
# Model Details
## Model Description
<!-- Provide a longer summary of what this model is. -->
VideoMAE Base model fine tuned on UCF101
- **Developed by:** [@nateraw](https://huggingface.co/nateraw)
- **Shared by [optional]:** [More Information Needed]
- **Model type:** fine-tuned
- **Language(s) (NLP):** en
- **License:** mit
- **Related Models [optional]:** [More Information Needed]
- **Parent Model [optional]:** [MCG-NJU/videomae-base](https://huggingface.co/MCG-NJU/videomae-base)
- **Resources for more information:** [More Information Needed]
# Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
## Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
This model can be used for Video Action Recognition
## Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
## Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
# Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
## Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recomendations.
# Training Details
## Training Data
<!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
## Training Procedure [optional]
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
### Preprocessing
We sampled clips from the videos of 64 frames, then took a uniform sample of those frames to get 16 frame inputs for the model. During training, we used PyTorchVideo's [`MixVideo`](https://github.com/facebookresearch/pytorchvideo/blob/main/pytorchvideo/transforms/mix.py) to apply mixup/cutmix.
### Speeds, Sizes, Times
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
# Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
## Testing Data, Factors & Metrics
### Testing Data
<!-- This should link to a Data Card if possible. -->
[More Information Needed]
### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
## Results
We only trained/evaluated one fold from the UCF101 annotations. Unlike in the VideoMAE paper, we did not perform inference over multiple crops/segments of validation videos, so the results are likely slightly lower than what you would get if you did that too.
- Eval Accuracy: 0.758209764957428
- Eval Accuracy Top 5: 0.8983050584793091
# Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
# Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
# Technical Specifications [optional]
## Model Architecture and Objective
[More Information Needed]
## Compute Infrastructure
[More Information Needed]
### Hardware
[More Information Needed]
### Software
[More Information Needed]
# Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
# Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
# More Information [optional]
[More Information Needed]
# Model Card Authors [optional]
[@nateraw](https://huggingface.co/nateraw)
# Model Card Contact
[@nateraw](https://huggingface.co/nateraw)
# How to Get Started with the Model
Use the code below to get started with the model.
<details>
<summary> Click to expand </summary>
```python
from decord import VideoReader, cpu
import torch
import numpy as np
from transformers import VideoMAEFeatureExtractor, VideoMAEForVideoClassification
from huggingface_hub import hf_hub_download
np.random.seed(0)
def sample_frame_indices(clip_len, frame_sample_rate, seg_len):
converted_len = int(clip_len * frame_sample_rate)
end_idx = np.random.randint(converted_len, seg_len)
start_idx = end_idx - converted_len
indices = np.linspace(start_idx, end_idx, num=clip_len)
indices = np.clip(indices, start_idx, end_idx - 1).astype(np.int64)
return indices
# video clip consists of 300 frames (10 seconds at 30 FPS)
file_path = hf_hub_download(
repo_id="nateraw/dino-clips", filename="archery.mp4", repo_type="space"
)
videoreader = VideoReader(file_path, num_threads=1, ctx=cpu(0))
# sample 16 frames
videoreader.seek(0)
indices = sample_frame_indices(clip_len=16, frame_sample_rate=4, seg_len=len(videoreader))
video = videoreader.get_batch(indices).asnumpy()
feature_extractor = VideoMAEFeatureExtractor.from_pretrained("nateraw/videomae-base-finetuned-ucf101")
model = VideoMAEForVideoClassification.from_pretrained("nateraw/videomae-base-finetuned-ucf101")
inputs = feature_extractor(list(video), return_tensors="pt")
with torch.no_grad():
outputs = model(**inputs)
logits = outputs.logits
# model predicts one of the 101 UCF101 classes
predicted_label = logits.argmax(-1).item()
print(model.config.id2label[predicted_label])
```
</details> |