napsternxg
commited on
Commit
·
f9d4f2d
1
Parent(s):
4575f2d
End of training
Browse files- README.md +82 -0
- all_results.json +41 -0
- config.json +52 -0
- pytorch_model.bin +3 -0
- special_tokens_map.json +7 -0
- test_results.json +41 -0
- tokenizer.json +0 -0
- tokenizer_config.json +22 -0
- train_results.json +41 -0
- trainer_state.json +838 -0
- training_args.bin +3 -0
- validation_results.json +41 -0
- vocab.txt +0 -0
README.md
ADDED
@@ -0,0 +1,82 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
base_model: sentence-transformers/paraphrase-MiniLM-L3-v2
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
datasets:
|
7 |
+
- nyt_ingredients
|
8 |
+
model-index:
|
9 |
+
- name: model
|
10 |
+
results: []
|
11 |
+
---
|
12 |
+
|
13 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
14 |
+
should probably proofread and complete it, then remove this comment. -->
|
15 |
+
|
16 |
+
# model
|
17 |
+
|
18 |
+
This model is a fine-tuned version of [sentence-transformers/paraphrase-MiniLM-L3-v2](https://huggingface.co/sentence-transformers/paraphrase-MiniLM-L3-v2) on the nyt_ingredients dataset.
|
19 |
+
It achieves the following results on the evaluation set:
|
20 |
+
- Loss: 0.4745
|
21 |
+
- Comment: {'precision': 0.6381763059701493, 'recall': 0.7527162701141521, 'f1': 0.6907301066447908, 'number': 7271}
|
22 |
+
- Name: {'precision': 0.7925138150349286, 'recall': 0.8159081150708458, 'f1': 0.8040408314380917, 'number': 9316}
|
23 |
+
- Qty: {'precision': 0.9870301746956062, 'recall': 0.9904382470119522, 'f1': 0.988731274028901, 'number': 7530}
|
24 |
+
- Range End: {'precision': 0.6532258064516129, 'recall': 0.9310344827586207, 'f1': 0.7677725118483412, 'number': 87}
|
25 |
+
- Unit: {'precision': 0.9281956050758279, 'recall': 0.9844083374364024, 'f1': 0.9554759060135404, 'number': 6093}
|
26 |
+
- Overall Precision: 0.8236
|
27 |
+
- Overall Recall: 0.8783
|
28 |
+
- Overall F1: 0.8501
|
29 |
+
- Overall Accuracy: 0.8310
|
30 |
+
|
31 |
+
## Model description
|
32 |
+
|
33 |
+
More information needed
|
34 |
+
|
35 |
+
## Intended uses & limitations
|
36 |
+
|
37 |
+
More information needed
|
38 |
+
|
39 |
+
## Training and evaluation data
|
40 |
+
|
41 |
+
More information needed
|
42 |
+
|
43 |
+
## Training procedure
|
44 |
+
|
45 |
+
### Training hyperparameters
|
46 |
+
|
47 |
+
The following hyperparameters were used during training:
|
48 |
+
- learning_rate: 5e-05
|
49 |
+
- train_batch_size: 32
|
50 |
+
- eval_batch_size: 32
|
51 |
+
- seed: 42
|
52 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
53 |
+
- lr_scheduler_type: linear
|
54 |
+
- num_epochs: 3
|
55 |
+
|
56 |
+
### Training results
|
57 |
+
|
58 |
+
| Training Loss | Epoch | Step | Validation Loss | Comment | Name | Qty | Range End | Unit | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
|
59 |
+
|:-------------:|:-----:|:-----:|:---------------:|:---------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
|
60 |
+
| 0.5473 | 0.2 | 1000 | 0.5439 | {'precision': 0.53239608801956, 'recall': 0.6330862043901729, 'f1': 0.5783916594727406, 'number': 6879} | {'precision': 0.7656748140276302, 'recall': 0.816245610060043, 'f1': 0.7901518890168339, 'number': 8827} | {'precision': 0.9752864835013116, 'recall': 0.9824756606397774, 'f1': 0.9788678722372341, 'number': 7190} | {'precision': 0.6060606060606061, 'recall': 0.7317073170731707, 'f1': 0.6629834254143646, 'number': 82} | {'precision': 0.923214867949136, 'recall': 0.9828184658104825, 'f1': 0.9520847343644923, 'number': 5762} | 0.7837 | 0.8471 | 0.8142 | 0.8057 |
|
61 |
+
| 0.5634 | 0.4 | 2000 | 0.5237 | {'precision': 0.5564878997932629, 'recall': 0.6652129670010176, 'f1': 0.6060124486822938, 'number': 6879} | {'precision': 0.7951952610794208, 'recall': 0.8212303160756769, 'f1': 0.8080031209942595, 'number': 8827} | {'precision': 0.9757675891504888, 'recall': 0.9856745479833101, 'f1': 0.9806960492631287, 'number': 7190} | {'precision': 0.5725806451612904, 'recall': 0.8658536585365854, 'f1': 0.6893203883495146, 'number': 82} | {'precision': 0.9235782955841616, 'recall': 0.9836862200624783, 'f1': 0.9526850995882007, 'number': 5762} | 0.7987 | 0.8577 | 0.8272 | 0.8120 |
|
62 |
+
| 0.5535 | 0.59 | 3000 | 0.5022 | {'precision': 0.5893937596393404, 'recall': 0.7221979938944614, 'f1': 0.6490723804546643, 'number': 6879} | {'precision': 0.7913148371531966, 'recall': 0.8174917865639515, 'f1': 0.8041903488242506, 'number': 8827} | {'precision': 0.9812708102108768, 'recall': 0.9837273991655077, 'f1': 0.9824975691068204, 'number': 7190} | {'precision': 0.562962962962963, 'recall': 0.926829268292683, 'f1': 0.7004608294930875, 'number': 82} | {'precision': 0.931615460852329, 'recall': 0.9788267962513016, 'f1': 0.9546377792823292, 'number': 5762} | 0.8070 | 0.8689 | 0.8368 | 0.8213 |
|
63 |
+
| 0.5366 | 0.79 | 4000 | 0.4892 | {'precision': 0.6037854098771622, 'recall': 0.7002471289431603, 'f1': 0.6484485427744499, 'number': 6879} | {'precision': 0.7957470010905126, 'recall': 0.826668177183641, 'f1': 0.8109129299327665, 'number': 8827} | {'precision': 0.9751884852638794, 'recall': 0.9894297635605007, 'f1': 0.9822575077666552, 'number': 7190} | {'precision': 0.5652173913043478, 'recall': 0.9512195121951219, 'f1': 0.7090909090909091, 'number': 82} | {'precision': 0.9284076015727392, 'recall': 0.9835126692120791, 'f1': 0.955166020562953, 'number': 5762} | 0.8139 | 0.8689 | 0.8405 | 0.8251 |
|
64 |
+
| 0.5256 | 0.99 | 5000 | 0.4813 | {'precision': 0.6161294276259346, 'recall': 0.730774821921791, 'f1': 0.6685729485303898, 'number': 6879} | {'precision': 0.7992788461538461, 'recall': 0.8287073750991277, 'f1': 0.8137271260915513, 'number': 8827} | {'precision': 0.9784340659340659, 'recall': 0.9906815020862308, 'f1': 0.9845196959225985, 'number': 7190} | {'precision': 0.6330275229357798, 'recall': 0.8414634146341463, 'f1': 0.7225130890052357, 'number': 82} | {'precision': 0.9291687161829808, 'recall': 0.9835126692120791, 'f1': 0.9555686704325098, 'number': 5762} | 0.8182 | 0.8769 | 0.8465 | 0.8299 |
|
65 |
+
| 0.5079 | 1.19 | 6000 | 0.4766 | {'precision': 0.6228698444060262, 'recall': 0.7332461113533943, 'f1': 0.6735661347399347, 'number': 6879} | {'precision': 0.8044889426779623, 'recall': 0.82836750877988, 'f1': 0.8162536280419737, 'number': 8827} | {'precision': 0.9840742279462679, 'recall': 0.988317107093185, 'f1': 0.9861911040177642, 'number': 7190} | {'precision': 0.6306306306306306, 'recall': 0.8536585365853658, 'f1': 0.7253886010362693, 'number': 82} | {'precision': 0.928082191780822, 'recall': 0.9876778896216591, 'f1': 0.9569530855893728, 'number': 5762} | 0.8229 | 0.8776 | 0.8494 | 0.8313 |
|
66 |
+
| 0.5047 | 1.39 | 7000 | 0.4780 | {'precision': 0.6244848484848485, 'recall': 0.7489460677424045, 'f1': 0.6810760790534734, 'number': 6879} | {'precision': 0.8084753263996459, 'recall': 0.8278010649144669, 'f1': 0.8180240694094598, 'number': 8827} | {'precision': 0.9799036476256022, 'recall': 0.990125173852573, 'f1': 0.9849878934624697, 'number': 7190} | {'precision': 0.5923076923076923, 'recall': 0.9390243902439024, 'f1': 0.7264150943396225, 'number': 82} | {'precision': 0.9348113831899404, 'recall': 0.9805623047552933, 'f1': 0.9571404370658986, 'number': 5762} | 0.8235 | 0.8805 | 0.8511 | 0.8305 |
|
67 |
+
| 0.4912 | 1.58 | 8000 | 0.4725 | {'precision': 0.6316635745207174, 'recall': 0.7424044192469835, 'f1': 0.6825715049452018, 'number': 6879} | {'precision': 0.8068570168669386, 'recall': 0.8291605301914581, 'f1': 0.8178567437702537, 'number': 8827} | {'precision': 0.9846047156726768, 'recall': 0.9873435326842838, 'f1': 0.9859722222222222, 'number': 7190} | {'precision': 0.6428571428571429, 'recall': 0.8780487804878049, 'f1': 0.7422680412371134, 'number': 82} | {'precision': 0.9298820445609436, 'recall': 0.9850746268656716, 'f1': 0.9566829597168379, 'number': 5762} | 0.8264 | 0.8794 | 0.8521 | 0.8342 |
|
68 |
+
| 0.4955 | 1.78 | 9000 | 0.4725 | {'precision': 0.6421661012690036, 'recall': 0.7429858991132432, 'f1': 0.688906860762906, 'number': 6879} | {'precision': 0.8048323036187114, 'recall': 0.8264415996374759, 'f1': 0.8154938237102454, 'number': 8827} | {'precision': 0.9815401570464252, 'recall': 0.9909596662030598, 'f1': 0.9862274205827393, 'number': 7190} | {'precision': 0.582089552238806, 'recall': 0.9512195121951219, 'f1': 0.7222222222222221, 'number': 82} | {'precision': 0.9313403416557161, 'recall': 0.9840333217632766, 'f1': 0.9569620253164556, 'number': 5762} | 0.8287 | 0.8796 | 0.8534 | 0.8332 |
|
69 |
+
| 0.4917 | 1.98 | 10000 | 0.4697 | {'precision': 0.6389365351629502, 'recall': 0.7581043756359936, 'f1': 0.6934379363074265, 'number': 6879} | {'precision': 0.8106822956983302, 'recall': 0.8305199954684491, 'f1': 0.8204812534974818, 'number': 8827} | {'precision': 0.9851553829078802, 'recall': 0.9876216968011127, 'f1': 0.9863869981941935, 'number': 7190} | {'precision': 0.6347826086956522, 'recall': 0.8902439024390244, 'f1': 0.7411167512690355, 'number': 82} | {'precision': 0.9327744904667982, 'recall': 0.9849010760152724, 'f1': 0.9581293263548878, 'number': 5762} | 0.8296 | 0.8836 | 0.8557 | 0.8341 |
|
70 |
+
| 0.4913 | 2.18 | 11000 | 0.4685 | {'precision': 0.6405220633934121, 'recall': 0.7490914377089694, 'f1': 0.6905655320289467, 'number': 6879} | {'precision': 0.8053573388955978, 'recall': 0.8310864393338621, 'f1': 0.8180196253345228, 'number': 8827} | {'precision': 0.9836745987825124, 'recall': 0.9888734353268428, 'f1': 0.9862671660424469, 'number': 7190} | {'precision': 0.6454545454545455, 'recall': 0.8658536585365854, 'f1': 0.7395833333333335, 'number': 82} | {'precision': 0.9313854235062377, 'recall': 0.9847275251648733, 'f1': 0.9573139868398851, 'number': 5762} | 0.8287 | 0.8818 | 0.8544 | 0.8355 |
|
71 |
+
| 0.4769 | 2.38 | 12000 | 0.4659 | {'precision': 0.6392910634048926, 'recall': 0.7445849687454572, 'f1': 0.6879323081055672, 'number': 6879} | {'precision': 0.8030103274005713, 'recall': 0.8280276424606321, 'f1': 0.8153271236544146, 'number': 8827} | {'precision': 0.9858431644691187, 'recall': 0.9878998609179416, 'f1': 0.9868704411253908, 'number': 7190} | {'precision': 0.6607142857142857, 'recall': 0.9024390243902439, 'f1': 0.7628865979381443, 'number': 82} | {'precision': 0.9313339888561127, 'recall': 0.9862894828184658, 'f1': 0.958024275118004, 'number': 5762} | 0.8283 | 0.8800 | 0.8534 | 0.8353 |
|
72 |
+
| 0.4752 | 2.57 | 13000 | 0.4651 | {'precision': 0.641625, 'recall': 0.7461840383776712, 'f1': 0.6899657235029236, 'number': 6879} | {'precision': 0.8089998899768952, 'recall': 0.833012348476266, 'f1': 0.8208305425318152, 'number': 8827} | {'precision': 0.9854389127721537, 'recall': 0.988317107093185, 'f1': 0.9868759113950422, 'number': 7190} | {'precision': 0.6634615384615384, 'recall': 0.8414634146341463, 'f1': 0.7419354838709676, 'number': 82} | {'precision': 0.932905772076961, 'recall': 0.9845539743144741, 'f1': 0.95803428185426, 'number': 5762} | 0.8310 | 0.8815 | 0.8555 | 0.8359 |
|
73 |
+
| 0.4834 | 2.77 | 14000 | 0.4628 | {'precision': 0.6457421533074903, 'recall': 0.7506905073411834, 'f1': 0.694272653939231, 'number': 6879} | {'precision': 0.8060932688077431, 'recall': 0.830293417922284, 'f1': 0.8180143981248955, 'number': 8827} | {'precision': 0.9835589941972921, 'recall': 0.990125173852573, 'f1': 0.9868311616301636, 'number': 7190} | {'precision': 0.6324786324786325, 'recall': 0.9024390243902439, 'f1': 0.7437185929648242, 'number': 82} | {'precision': 0.9318890530116527, 'recall': 0.9854217285664699, 'f1': 0.9579080556727119, 'number': 5762} | 0.8306 | 0.8825 | 0.8558 | 0.8365 |
|
74 |
+
| 0.4784 | 2.97 | 15000 | 0.4626 | {'precision': 0.6482109227871939, 'recall': 0.7505451373746184, 'f1': 0.6956345998383185, 'number': 6879} | {'precision': 0.8074424749532093, 'recall': 0.8308598617876969, 'f1': 0.8189838079285315, 'number': 8827} | {'precision': 0.9836881393419962, 'recall': 0.9897079276773296, 'f1': 0.9866888519134775, 'number': 7190} | {'precision': 0.6460176991150443, 'recall': 0.8902439024390244, 'f1': 0.7487179487179487, 'number': 82} | {'precision': 0.9323925172300623, 'recall': 0.9861159319680667, 'f1': 0.958502024291498, 'number': 5762} | 0.8320 | 0.8827 | 0.8566 | 0.8370 |
|
75 |
+
|
76 |
+
|
77 |
+
### Framework versions
|
78 |
+
|
79 |
+
- Transformers 4.33.3
|
80 |
+
- Pytorch 2.0.1+cu118
|
81 |
+
- Datasets 2.14.5
|
82 |
+
- Tokenizers 0.13.3
|
all_results.json
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 3.0,
|
3 |
+
"eval_COMMENT": {
|
4 |
+
"f1": 0.6907301066447908,
|
5 |
+
"number": 7271,
|
6 |
+
"precision": 0.6381763059701493,
|
7 |
+
"recall": 0.7527162701141521
|
8 |
+
},
|
9 |
+
"eval_NAME": {
|
10 |
+
"f1": 0.8040408314380917,
|
11 |
+
"number": 9316,
|
12 |
+
"precision": 0.7925138150349286,
|
13 |
+
"recall": 0.8159081150708458
|
14 |
+
},
|
15 |
+
"eval_QTY": {
|
16 |
+
"f1": 0.988731274028901,
|
17 |
+
"number": 7530,
|
18 |
+
"precision": 0.9870301746956062,
|
19 |
+
"recall": 0.9904382470119522
|
20 |
+
},
|
21 |
+
"eval_RANGE_END": {
|
22 |
+
"f1": 0.7677725118483412,
|
23 |
+
"number": 87,
|
24 |
+
"precision": 0.6532258064516129,
|
25 |
+
"recall": 0.9310344827586207
|
26 |
+
},
|
27 |
+
"eval_UNIT": {
|
28 |
+
"f1": 0.9554759060135404,
|
29 |
+
"number": 6093,
|
30 |
+
"precision": 0.9281956050758279,
|
31 |
+
"recall": 0.9844083374364024
|
32 |
+
},
|
33 |
+
"eval_loss": 0.4744836091995239,
|
34 |
+
"eval_overall_accuracy": 0.8310309334200119,
|
35 |
+
"eval_overall_f1": 0.8501102130786186,
|
36 |
+
"eval_overall_precision": 0.8236404716951933,
|
37 |
+
"eval_overall_recall": 0.8783377892200548,
|
38 |
+
"eval_runtime": 10.5249,
|
39 |
+
"eval_samples_per_second": 850.746,
|
40 |
+
"eval_steps_per_second": 26.604
|
41 |
+
}
|
config.json
ADDED
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "sentence-transformers/paraphrase-MiniLM-L3-v2",
|
3 |
+
"architectures": [
|
4 |
+
"BertForTokenClassification"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"classifier_dropout": null,
|
8 |
+
"gradient_checkpointing": false,
|
9 |
+
"hidden_act": "gelu",
|
10 |
+
"hidden_dropout_prob": 0.1,
|
11 |
+
"hidden_size": 384,
|
12 |
+
"id2label": {
|
13 |
+
"0": "O",
|
14 |
+
"1": "B-COMMENT",
|
15 |
+
"2": "I-COMMENT",
|
16 |
+
"3": "B-NAME",
|
17 |
+
"4": "I-NAME",
|
18 |
+
"5": "B-RANGE_END",
|
19 |
+
"6": "I-RANGE_END",
|
20 |
+
"7": "B-QTY",
|
21 |
+
"8": "I-QTY",
|
22 |
+
"9": "B-UNIT",
|
23 |
+
"10": "I-UNIT"
|
24 |
+
},
|
25 |
+
"initializer_range": 0.02,
|
26 |
+
"intermediate_size": 1536,
|
27 |
+
"label2id": {
|
28 |
+
"B-COMMENT": 1,
|
29 |
+
"B-NAME": 3,
|
30 |
+
"B-QTY": 7,
|
31 |
+
"B-RANGE_END": 5,
|
32 |
+
"B-UNIT": 9,
|
33 |
+
"I-COMMENT": 2,
|
34 |
+
"I-NAME": 4,
|
35 |
+
"I-QTY": 8,
|
36 |
+
"I-RANGE_END": 6,
|
37 |
+
"I-UNIT": 10,
|
38 |
+
"O": 0
|
39 |
+
},
|
40 |
+
"layer_norm_eps": 1e-12,
|
41 |
+
"max_position_embeddings": 512,
|
42 |
+
"model_type": "bert",
|
43 |
+
"num_attention_heads": 12,
|
44 |
+
"num_hidden_layers": 3,
|
45 |
+
"pad_token_id": 0,
|
46 |
+
"position_embedding_type": "absolute",
|
47 |
+
"torch_dtype": "float32",
|
48 |
+
"transformers_version": "4.33.3",
|
49 |
+
"type_vocab_size": 2,
|
50 |
+
"use_cache": true,
|
51 |
+
"vocab_size": 30522
|
52 |
+
}
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bff7143eb05a565f82929e51f35098a8de7fbbc1b51db4d80570171ed418fec0
|
3 |
+
size 69003222
|
special_tokens_map.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": "[CLS]",
|
3 |
+
"mask_token": "[MASK]",
|
4 |
+
"pad_token": "[PAD]",
|
5 |
+
"sep_token": "[SEP]",
|
6 |
+
"unk_token": "[UNK]"
|
7 |
+
}
|
test_results.json
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 3.0,
|
3 |
+
"eval_COMMENT": {
|
4 |
+
"f1": 0.6907301066447908,
|
5 |
+
"number": 7271,
|
6 |
+
"precision": 0.6381763059701493,
|
7 |
+
"recall": 0.7527162701141521
|
8 |
+
},
|
9 |
+
"eval_NAME": {
|
10 |
+
"f1": 0.8040408314380917,
|
11 |
+
"number": 9316,
|
12 |
+
"precision": 0.7925138150349286,
|
13 |
+
"recall": 0.8159081150708458
|
14 |
+
},
|
15 |
+
"eval_QTY": {
|
16 |
+
"f1": 0.988731274028901,
|
17 |
+
"number": 7530,
|
18 |
+
"precision": 0.9870301746956062,
|
19 |
+
"recall": 0.9904382470119522
|
20 |
+
},
|
21 |
+
"eval_RANGE_END": {
|
22 |
+
"f1": 0.7677725118483412,
|
23 |
+
"number": 87,
|
24 |
+
"precision": 0.6532258064516129,
|
25 |
+
"recall": 0.9310344827586207
|
26 |
+
},
|
27 |
+
"eval_UNIT": {
|
28 |
+
"f1": 0.9554759060135404,
|
29 |
+
"number": 6093,
|
30 |
+
"precision": 0.9281956050758279,
|
31 |
+
"recall": 0.9844083374364024
|
32 |
+
},
|
33 |
+
"eval_loss": 0.4744836091995239,
|
34 |
+
"eval_overall_accuracy": 0.8310309334200119,
|
35 |
+
"eval_overall_f1": 0.8501102130786186,
|
36 |
+
"eval_overall_precision": 0.8236404716951933,
|
37 |
+
"eval_overall_recall": 0.8783377892200548,
|
38 |
+
"eval_runtime": 10.5249,
|
39 |
+
"eval_samples_per_second": 850.746,
|
40 |
+
"eval_steps_per_second": 26.604
|
41 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"clean_up_tokenization_spaces": true,
|
3 |
+
"cls_token": "[CLS]",
|
4 |
+
"do_basic_tokenize": true,
|
5 |
+
"do_lower_case": true,
|
6 |
+
"mask_token": "[MASK]",
|
7 |
+
"max_length": 128,
|
8 |
+
"model_max_length": 512,
|
9 |
+
"never_split": null,
|
10 |
+
"pad_to_multiple_of": null,
|
11 |
+
"pad_token": "[PAD]",
|
12 |
+
"pad_token_type_id": 0,
|
13 |
+
"padding_side": "right",
|
14 |
+
"sep_token": "[SEP]",
|
15 |
+
"stride": 0,
|
16 |
+
"strip_accents": null,
|
17 |
+
"tokenize_chinese_chars": true,
|
18 |
+
"tokenizer_class": "BertTokenizer",
|
19 |
+
"truncation_side": "right",
|
20 |
+
"truncation_strategy": "longest_first",
|
21 |
+
"unk_token": "[UNK]"
|
22 |
+
}
|
train_results.json
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 3.0,
|
3 |
+
"eval_COMMENT": {
|
4 |
+
"f1": 0.7121685446922926,
|
5 |
+
"number": 129638,
|
6 |
+
"precision": 0.657763516472026,
|
7 |
+
"recall": 0.776385010567889
|
8 |
+
},
|
9 |
+
"eval_NAME": {
|
10 |
+
"f1": 0.8171967248248062,
|
11 |
+
"number": 167657,
|
12 |
+
"precision": 0.8046552501647722,
|
13 |
+
"recall": 0.8301353358344715
|
14 |
+
},
|
15 |
+
"eval_QTY": {
|
16 |
+
"f1": 0.9863004635126243,
|
17 |
+
"number": 135744,
|
18 |
+
"precision": 0.9842563587143915,
|
19 |
+
"recall": 0.9883530763790664
|
20 |
+
},
|
21 |
+
"eval_RANGE_END": {
|
22 |
+
"f1": 0.7583212735166425,
|
23 |
+
"number": 1695,
|
24 |
+
"precision": 0.6413708690330477,
|
25 |
+
"recall": 0.9274336283185841
|
26 |
+
},
|
27 |
+
"eval_UNIT": {
|
28 |
+
"f1": 0.9554243516107167,
|
29 |
+
"number": 108698,
|
30 |
+
"precision": 0.9270964950237992,
|
31 |
+
"recall": 0.9855379123810926
|
32 |
+
},
|
33 |
+
"eval_loss": 0.45067697763442993,
|
34 |
+
"eval_overall_accuracy": 0.8416610561221927,
|
35 |
+
"eval_overall_f1": 0.8590856303810985,
|
36 |
+
"eval_overall_precision": 0.8318004869953627,
|
37 |
+
"eval_overall_recall": 0.8882215254162434,
|
38 |
+
"eval_runtime": 159.8391,
|
39 |
+
"eval_samples_per_second": 1011.035,
|
40 |
+
"eval_steps_per_second": 31.601
|
41 |
+
}
|
trainer_state.json
ADDED
@@ -0,0 +1,838 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 3.0,
|
5 |
+
"eval_steps": 1000,
|
6 |
+
"global_step": 15153,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.1,
|
13 |
+
"learning_rate": 4.835016168415495e-05,
|
14 |
+
"loss": 0.5803,
|
15 |
+
"step": 500
|
16 |
+
},
|
17 |
+
{
|
18 |
+
"epoch": 0.2,
|
19 |
+
"learning_rate": 4.670032336830991e-05,
|
20 |
+
"loss": 0.5473,
|
21 |
+
"step": 1000
|
22 |
+
},
|
23 |
+
{
|
24 |
+
"epoch": 0.2,
|
25 |
+
"eval_COMMENT": {
|
26 |
+
"f1": 0.5783916594727406,
|
27 |
+
"number": 6879,
|
28 |
+
"precision": 0.53239608801956,
|
29 |
+
"recall": 0.6330862043901729
|
30 |
+
},
|
31 |
+
"eval_NAME": {
|
32 |
+
"f1": 0.7901518890168339,
|
33 |
+
"number": 8827,
|
34 |
+
"precision": 0.7656748140276302,
|
35 |
+
"recall": 0.816245610060043
|
36 |
+
},
|
37 |
+
"eval_QTY": {
|
38 |
+
"f1": 0.9788678722372341,
|
39 |
+
"number": 7190,
|
40 |
+
"precision": 0.9752864835013116,
|
41 |
+
"recall": 0.9824756606397774
|
42 |
+
},
|
43 |
+
"eval_RANGE_END": {
|
44 |
+
"f1": 0.6629834254143646,
|
45 |
+
"number": 82,
|
46 |
+
"precision": 0.6060606060606061,
|
47 |
+
"recall": 0.7317073170731707
|
48 |
+
},
|
49 |
+
"eval_UNIT": {
|
50 |
+
"f1": 0.9520847343644923,
|
51 |
+
"number": 5762,
|
52 |
+
"precision": 0.923214867949136,
|
53 |
+
"recall": 0.9828184658104825
|
54 |
+
},
|
55 |
+
"eval_loss": 0.5438547134399414,
|
56 |
+
"eval_overall_accuracy": 0.8057357133291243,
|
57 |
+
"eval_overall_f1": 0.8141992442229877,
|
58 |
+
"eval_overall_precision": 0.783718534732505,
|
59 |
+
"eval_overall_recall": 0.8471468336812804,
|
60 |
+
"eval_runtime": 7.0491,
|
61 |
+
"eval_samples_per_second": 1206.676,
|
62 |
+
"eval_steps_per_second": 37.735,
|
63 |
+
"step": 1000
|
64 |
+
},
|
65 |
+
{
|
66 |
+
"epoch": 0.3,
|
67 |
+
"learning_rate": 4.505048505246486e-05,
|
68 |
+
"loss": 0.5755,
|
69 |
+
"step": 1500
|
70 |
+
},
|
71 |
+
{
|
72 |
+
"epoch": 0.4,
|
73 |
+
"learning_rate": 4.3400646736619816e-05,
|
74 |
+
"loss": 0.5634,
|
75 |
+
"step": 2000
|
76 |
+
},
|
77 |
+
{
|
78 |
+
"epoch": 0.4,
|
79 |
+
"eval_COMMENT": {
|
80 |
+
"f1": 0.6060124486822938,
|
81 |
+
"number": 6879,
|
82 |
+
"precision": 0.5564878997932629,
|
83 |
+
"recall": 0.6652129670010176
|
84 |
+
},
|
85 |
+
"eval_NAME": {
|
86 |
+
"f1": 0.8080031209942595,
|
87 |
+
"number": 8827,
|
88 |
+
"precision": 0.7951952610794208,
|
89 |
+
"recall": 0.8212303160756769
|
90 |
+
},
|
91 |
+
"eval_QTY": {
|
92 |
+
"f1": 0.9806960492631287,
|
93 |
+
"number": 7190,
|
94 |
+
"precision": 0.9757675891504888,
|
95 |
+
"recall": 0.9856745479833101
|
96 |
+
},
|
97 |
+
"eval_RANGE_END": {
|
98 |
+
"f1": 0.6893203883495146,
|
99 |
+
"number": 82,
|
100 |
+
"precision": 0.5725806451612904,
|
101 |
+
"recall": 0.8658536585365854
|
102 |
+
},
|
103 |
+
"eval_UNIT": {
|
104 |
+
"f1": 0.9526850995882007,
|
105 |
+
"number": 5762,
|
106 |
+
"precision": 0.9235782955841616,
|
107 |
+
"recall": 0.9836862200624783
|
108 |
+
},
|
109 |
+
"eval_loss": 0.5236877799034119,
|
110 |
+
"eval_overall_accuracy": 0.8120300751879699,
|
111 |
+
"eval_overall_f1": 0.8271731288693521,
|
112 |
+
"eval_overall_precision": 0.7987233904675501,
|
113 |
+
"eval_overall_recall": 0.8577244258872652,
|
114 |
+
"eval_runtime": 10.0134,
|
115 |
+
"eval_samples_per_second": 849.459,
|
116 |
+
"eval_steps_per_second": 26.564,
|
117 |
+
"step": 2000
|
118 |
+
},
|
119 |
+
{
|
120 |
+
"epoch": 0.49,
|
121 |
+
"learning_rate": 4.1750808420774766e-05,
|
122 |
+
"loss": 0.5454,
|
123 |
+
"step": 2500
|
124 |
+
},
|
125 |
+
{
|
126 |
+
"epoch": 0.59,
|
127 |
+
"learning_rate": 4.010097010492972e-05,
|
128 |
+
"loss": 0.5535,
|
129 |
+
"step": 3000
|
130 |
+
},
|
131 |
+
{
|
132 |
+
"epoch": 0.59,
|
133 |
+
"eval_COMMENT": {
|
134 |
+
"f1": 0.6490723804546643,
|
135 |
+
"number": 6879,
|
136 |
+
"precision": 0.5893937596393404,
|
137 |
+
"recall": 0.7221979938944614
|
138 |
+
},
|
139 |
+
"eval_NAME": {
|
140 |
+
"f1": 0.8041903488242506,
|
141 |
+
"number": 8827,
|
142 |
+
"precision": 0.7913148371531966,
|
143 |
+
"recall": 0.8174917865639515
|
144 |
+
},
|
145 |
+
"eval_QTY": {
|
146 |
+
"f1": 0.9824975691068204,
|
147 |
+
"number": 7190,
|
148 |
+
"precision": 0.9812708102108768,
|
149 |
+
"recall": 0.9837273991655077
|
150 |
+
},
|
151 |
+
"eval_RANGE_END": {
|
152 |
+
"f1": 0.7004608294930875,
|
153 |
+
"number": 82,
|
154 |
+
"precision": 0.562962962962963,
|
155 |
+
"recall": 0.926829268292683
|
156 |
+
},
|
157 |
+
"eval_UNIT": {
|
158 |
+
"f1": 0.9546377792823292,
|
159 |
+
"number": 5762,
|
160 |
+
"precision": 0.931615460852329,
|
161 |
+
"recall": 0.9788267962513016
|
162 |
+
},
|
163 |
+
"eval_loss": 0.5021980404853821,
|
164 |
+
"eval_overall_accuracy": 0.8213281294840153,
|
165 |
+
"eval_overall_f1": 0.8368266733685181,
|
166 |
+
"eval_overall_precision": 0.8070124414283406,
|
167 |
+
"eval_overall_recall": 0.86892832289492,
|
168 |
+
"eval_runtime": 7.7747,
|
169 |
+
"eval_samples_per_second": 1094.065,
|
170 |
+
"eval_steps_per_second": 34.214,
|
171 |
+
"step": 3000
|
172 |
+
},
|
173 |
+
{
|
174 |
+
"epoch": 0.69,
|
175 |
+
"learning_rate": 3.845113178908467e-05,
|
176 |
+
"loss": 0.5391,
|
177 |
+
"step": 3500
|
178 |
+
},
|
179 |
+
{
|
180 |
+
"epoch": 0.79,
|
181 |
+
"learning_rate": 3.680129347323962e-05,
|
182 |
+
"loss": 0.5366,
|
183 |
+
"step": 4000
|
184 |
+
},
|
185 |
+
{
|
186 |
+
"epoch": 0.79,
|
187 |
+
"eval_COMMENT": {
|
188 |
+
"f1": 0.6484485427744499,
|
189 |
+
"number": 6879,
|
190 |
+
"precision": 0.6037854098771622,
|
191 |
+
"recall": 0.7002471289431603
|
192 |
+
},
|
193 |
+
"eval_NAME": {
|
194 |
+
"f1": 0.8109129299327665,
|
195 |
+
"number": 8827,
|
196 |
+
"precision": 0.7957470010905126,
|
197 |
+
"recall": 0.826668177183641
|
198 |
+
},
|
199 |
+
"eval_QTY": {
|
200 |
+
"f1": 0.9822575077666552,
|
201 |
+
"number": 7190,
|
202 |
+
"precision": 0.9751884852638794,
|
203 |
+
"recall": 0.9894297635605007
|
204 |
+
},
|
205 |
+
"eval_RANGE_END": {
|
206 |
+
"f1": 0.7090909090909091,
|
207 |
+
"number": 82,
|
208 |
+
"precision": 0.5652173913043478,
|
209 |
+
"recall": 0.9512195121951219
|
210 |
+
},
|
211 |
+
"eval_UNIT": {
|
212 |
+
"f1": 0.955166020562953,
|
213 |
+
"number": 5762,
|
214 |
+
"precision": 0.9284076015727392,
|
215 |
+
"recall": 0.9835126692120791
|
216 |
+
},
|
217 |
+
"eval_loss": 0.4891820251941681,
|
218 |
+
"eval_overall_accuracy": 0.8250970938797375,
|
219 |
+
"eval_overall_f1": 0.8404880100967607,
|
220 |
+
"eval_overall_precision": 0.8138504155124654,
|
221 |
+
"eval_overall_recall": 0.86892832289492,
|
222 |
+
"eval_runtime": 9.7418,
|
223 |
+
"eval_samples_per_second": 873.148,
|
224 |
+
"eval_steps_per_second": 27.305,
|
225 |
+
"step": 4000
|
226 |
+
},
|
227 |
+
{
|
228 |
+
"epoch": 0.89,
|
229 |
+
"learning_rate": 3.515145515739457e-05,
|
230 |
+
"loss": 0.5234,
|
231 |
+
"step": 4500
|
232 |
+
},
|
233 |
+
{
|
234 |
+
"epoch": 0.99,
|
235 |
+
"learning_rate": 3.3501616841549535e-05,
|
236 |
+
"loss": 0.5256,
|
237 |
+
"step": 5000
|
238 |
+
},
|
239 |
+
{
|
240 |
+
"epoch": 0.99,
|
241 |
+
"eval_COMMENT": {
|
242 |
+
"f1": 0.6685729485303898,
|
243 |
+
"number": 6879,
|
244 |
+
"precision": 0.6161294276259346,
|
245 |
+
"recall": 0.730774821921791
|
246 |
+
},
|
247 |
+
"eval_NAME": {
|
248 |
+
"f1": 0.8137271260915513,
|
249 |
+
"number": 8827,
|
250 |
+
"precision": 0.7992788461538461,
|
251 |
+
"recall": 0.8287073750991277
|
252 |
+
},
|
253 |
+
"eval_QTY": {
|
254 |
+
"f1": 0.9845196959225985,
|
255 |
+
"number": 7190,
|
256 |
+
"precision": 0.9784340659340659,
|
257 |
+
"recall": 0.9906815020862308
|
258 |
+
},
|
259 |
+
"eval_RANGE_END": {
|
260 |
+
"f1": 0.7225130890052357,
|
261 |
+
"number": 82,
|
262 |
+
"precision": 0.6330275229357798,
|
263 |
+
"recall": 0.8414634146341463
|
264 |
+
},
|
265 |
+
"eval_UNIT": {
|
266 |
+
"f1": 0.9555686704325098,
|
267 |
+
"number": 5762,
|
268 |
+
"precision": 0.9291687161829808,
|
269 |
+
"recall": 0.9835126692120791
|
270 |
+
},
|
271 |
+
"eval_loss": 0.4813206195831299,
|
272 |
+
"eval_overall_accuracy": 0.8299374390173908,
|
273 |
+
"eval_overall_f1": 0.8465375636137659,
|
274 |
+
"eval_overall_precision": 0.8182408519757135,
|
275 |
+
"eval_overall_recall": 0.8768615170494085,
|
276 |
+
"eval_runtime": 8.6073,
|
277 |
+
"eval_samples_per_second": 988.232,
|
278 |
+
"eval_steps_per_second": 30.904,
|
279 |
+
"step": 5000
|
280 |
+
},
|
281 |
+
{
|
282 |
+
"epoch": 1.09,
|
283 |
+
"learning_rate": 3.1851778525704485e-05,
|
284 |
+
"loss": 0.5108,
|
285 |
+
"step": 5500
|
286 |
+
},
|
287 |
+
{
|
288 |
+
"epoch": 1.19,
|
289 |
+
"learning_rate": 3.0201940209859435e-05,
|
290 |
+
"loss": 0.5079,
|
291 |
+
"step": 6000
|
292 |
+
},
|
293 |
+
{
|
294 |
+
"epoch": 1.19,
|
295 |
+
"eval_COMMENT": {
|
296 |
+
"f1": 0.6735661347399347,
|
297 |
+
"number": 6879,
|
298 |
+
"precision": 0.6228698444060262,
|
299 |
+
"recall": 0.7332461113533943
|
300 |
+
},
|
301 |
+
"eval_NAME": {
|
302 |
+
"f1": 0.8162536280419737,
|
303 |
+
"number": 8827,
|
304 |
+
"precision": 0.8044889426779623,
|
305 |
+
"recall": 0.82836750877988
|
306 |
+
},
|
307 |
+
"eval_QTY": {
|
308 |
+
"f1": 0.9861911040177642,
|
309 |
+
"number": 7190,
|
310 |
+
"precision": 0.9840742279462679,
|
311 |
+
"recall": 0.988317107093185
|
312 |
+
},
|
313 |
+
"eval_RANGE_END": {
|
314 |
+
"f1": 0.7253886010362693,
|
315 |
+
"number": 82,
|
316 |
+
"precision": 0.6306306306306306,
|
317 |
+
"recall": 0.8536585365853658
|
318 |
+
},
|
319 |
+
"eval_UNIT": {
|
320 |
+
"f1": 0.9569530855893728,
|
321 |
+
"number": 5762,
|
322 |
+
"precision": 0.928082191780822,
|
323 |
+
"recall": 0.9876778896216591
|
324 |
+
},
|
325 |
+
"eval_loss": 0.4765673577785492,
|
326 |
+
"eval_overall_accuracy": 0.8312575331458417,
|
327 |
+
"eval_overall_f1": 0.8493879544038659,
|
328 |
+
"eval_overall_precision": 0.8229095298685198,
|
329 |
+
"eval_overall_recall": 0.8776270006958943,
|
330 |
+
"eval_runtime": 12.1667,
|
331 |
+
"eval_samples_per_second": 699.123,
|
332 |
+
"eval_steps_per_second": 21.863,
|
333 |
+
"step": 6000
|
334 |
+
},
|
335 |
+
{
|
336 |
+
"epoch": 1.29,
|
337 |
+
"learning_rate": 2.855210189401439e-05,
|
338 |
+
"loss": 0.5028,
|
339 |
+
"step": 6500
|
340 |
+
},
|
341 |
+
{
|
342 |
+
"epoch": 1.39,
|
343 |
+
"learning_rate": 2.690226357816934e-05,
|
344 |
+
"loss": 0.5047,
|
345 |
+
"step": 7000
|
346 |
+
},
|
347 |
+
{
|
348 |
+
"epoch": 1.39,
|
349 |
+
"eval_COMMENT": {
|
350 |
+
"f1": 0.6810760790534734,
|
351 |
+
"number": 6879,
|
352 |
+
"precision": 0.6244848484848485,
|
353 |
+
"recall": 0.7489460677424045
|
354 |
+
},
|
355 |
+
"eval_NAME": {
|
356 |
+
"f1": 0.8180240694094598,
|
357 |
+
"number": 8827,
|
358 |
+
"precision": 0.8084753263996459,
|
359 |
+
"recall": 0.8278010649144669
|
360 |
+
},
|
361 |
+
"eval_QTY": {
|
362 |
+
"f1": 0.9849878934624697,
|
363 |
+
"number": 7190,
|
364 |
+
"precision": 0.9799036476256022,
|
365 |
+
"recall": 0.990125173852573
|
366 |
+
},
|
367 |
+
"eval_RANGE_END": {
|
368 |
+
"f1": 0.7264150943396225,
|
369 |
+
"number": 82,
|
370 |
+
"precision": 0.5923076923076923,
|
371 |
+
"recall": 0.9390243902439024
|
372 |
+
},
|
373 |
+
"eval_UNIT": {
|
374 |
+
"f1": 0.9571404370658986,
|
375 |
+
"number": 5762,
|
376 |
+
"precision": 0.9348113831899404,
|
377 |
+
"recall": 0.9805623047552933
|
378 |
+
},
|
379 |
+
"eval_loss": 0.47799554467201233,
|
380 |
+
"eval_overall_accuracy": 0.8304731293883564,
|
381 |
+
"eval_overall_f1": 0.8510602519044176,
|
382 |
+
"eval_overall_precision": 0.8235428125101703,
|
383 |
+
"eval_overall_recall": 0.8804801670146137,
|
384 |
+
"eval_runtime": 8.0121,
|
385 |
+
"eval_samples_per_second": 1061.644,
|
386 |
+
"eval_steps_per_second": 33.2,
|
387 |
+
"step": 7000
|
388 |
+
},
|
389 |
+
{
|
390 |
+
"epoch": 1.48,
|
391 |
+
"learning_rate": 2.5252425262324292e-05,
|
392 |
+
"loss": 0.5058,
|
393 |
+
"step": 7500
|
394 |
+
},
|
395 |
+
{
|
396 |
+
"epoch": 1.58,
|
397 |
+
"learning_rate": 2.3602586946479245e-05,
|
398 |
+
"loss": 0.4912,
|
399 |
+
"step": 8000
|
400 |
+
},
|
401 |
+
{
|
402 |
+
"epoch": 1.58,
|
403 |
+
"eval_COMMENT": {
|
404 |
+
"f1": 0.6825715049452018,
|
405 |
+
"number": 6879,
|
406 |
+
"precision": 0.6316635745207174,
|
407 |
+
"recall": 0.7424044192469835
|
408 |
+
},
|
409 |
+
"eval_NAME": {
|
410 |
+
"f1": 0.8178567437702537,
|
411 |
+
"number": 8827,
|
412 |
+
"precision": 0.8068570168669386,
|
413 |
+
"recall": 0.8291605301914581
|
414 |
+
},
|
415 |
+
"eval_QTY": {
|
416 |
+
"f1": 0.9859722222222222,
|
417 |
+
"number": 7190,
|
418 |
+
"precision": 0.9846047156726768,
|
419 |
+
"recall": 0.9873435326842838
|
420 |
+
},
|
421 |
+
"eval_RANGE_END": {
|
422 |
+
"f1": 0.7422680412371134,
|
423 |
+
"number": 82,
|
424 |
+
"precision": 0.6428571428571429,
|
425 |
+
"recall": 0.8780487804878049
|
426 |
+
},
|
427 |
+
"eval_UNIT": {
|
428 |
+
"f1": 0.9566829597168379,
|
429 |
+
"number": 5762,
|
430 |
+
"precision": 0.9298820445609436,
|
431 |
+
"recall": 0.9850746268656716
|
432 |
+
},
|
433 |
+
"eval_loss": 0.4724733531475067,
|
434 |
+
"eval_overall_accuracy": 0.8342229619851155,
|
435 |
+
"eval_overall_f1": 0.8520616297495027,
|
436 |
+
"eval_overall_precision": 0.8264011510038585,
|
437 |
+
"eval_overall_recall": 0.8793667362560891,
|
438 |
+
"eval_runtime": 10.131,
|
439 |
+
"eval_samples_per_second": 839.6,
|
440 |
+
"eval_steps_per_second": 26.256,
|
441 |
+
"step": 8000
|
442 |
+
},
|
443 |
+
{
|
444 |
+
"epoch": 1.68,
|
445 |
+
"learning_rate": 2.19527486306342e-05,
|
446 |
+
"loss": 0.4994,
|
447 |
+
"step": 8500
|
448 |
+
},
|
449 |
+
{
|
450 |
+
"epoch": 1.78,
|
451 |
+
"learning_rate": 2.0302910314789152e-05,
|
452 |
+
"loss": 0.4955,
|
453 |
+
"step": 9000
|
454 |
+
},
|
455 |
+
{
|
456 |
+
"epoch": 1.78,
|
457 |
+
"eval_COMMENT": {
|
458 |
+
"f1": 0.688906860762906,
|
459 |
+
"number": 6879,
|
460 |
+
"precision": 0.6421661012690036,
|
461 |
+
"recall": 0.7429858991132432
|
462 |
+
},
|
463 |
+
"eval_NAME": {
|
464 |
+
"f1": 0.8154938237102454,
|
465 |
+
"number": 8827,
|
466 |
+
"precision": 0.8048323036187114,
|
467 |
+
"recall": 0.8264415996374759
|
468 |
+
},
|
469 |
+
"eval_QTY": {
|
470 |
+
"f1": 0.9862274205827393,
|
471 |
+
"number": 7190,
|
472 |
+
"precision": 0.9815401570464252,
|
473 |
+
"recall": 0.9909596662030598
|
474 |
+
},
|
475 |
+
"eval_RANGE_END": {
|
476 |
+
"f1": 0.7222222222222221,
|
477 |
+
"number": 82,
|
478 |
+
"precision": 0.582089552238806,
|
479 |
+
"recall": 0.9512195121951219
|
480 |
+
},
|
481 |
+
"eval_UNIT": {
|
482 |
+
"f1": 0.9569620253164556,
|
483 |
+
"number": 5762,
|
484 |
+
"precision": 0.9313403416557161,
|
485 |
+
"recall": 0.9840333217632766
|
486 |
+
},
|
487 |
+
"eval_loss": 0.47245046496391296,
|
488 |
+
"eval_overall_accuracy": 0.8331898448411104,
|
489 |
+
"eval_overall_f1": 0.8533859968942002,
|
490 |
+
"eval_overall_precision": 0.8287109887227905,
|
491 |
+
"eval_overall_recall": 0.8795755045233125,
|
492 |
+
"eval_runtime": 9.9308,
|
493 |
+
"eval_samples_per_second": 856.526,
|
494 |
+
"eval_steps_per_second": 26.785,
|
495 |
+
"step": 9000
|
496 |
+
},
|
497 |
+
{
|
498 |
+
"epoch": 1.88,
|
499 |
+
"learning_rate": 1.8653071998944105e-05,
|
500 |
+
"loss": 0.5006,
|
501 |
+
"step": 9500
|
502 |
+
},
|
503 |
+
{
|
504 |
+
"epoch": 1.98,
|
505 |
+
"learning_rate": 1.700323368309906e-05,
|
506 |
+
"loss": 0.4917,
|
507 |
+
"step": 10000
|
508 |
+
},
|
509 |
+
{
|
510 |
+
"epoch": 1.98,
|
511 |
+
"eval_COMMENT": {
|
512 |
+
"f1": 0.6934379363074265,
|
513 |
+
"number": 6879,
|
514 |
+
"precision": 0.6389365351629502,
|
515 |
+
"recall": 0.7581043756359936
|
516 |
+
},
|
517 |
+
"eval_NAME": {
|
518 |
+
"f1": 0.8204812534974818,
|
519 |
+
"number": 8827,
|
520 |
+
"precision": 0.8106822956983302,
|
521 |
+
"recall": 0.8305199954684491
|
522 |
+
},
|
523 |
+
"eval_QTY": {
|
524 |
+
"f1": 0.9863869981941935,
|
525 |
+
"number": 7190,
|
526 |
+
"precision": 0.9851553829078802,
|
527 |
+
"recall": 0.9876216968011127
|
528 |
+
},
|
529 |
+
"eval_RANGE_END": {
|
530 |
+
"f1": 0.7411167512690355,
|
531 |
+
"number": 82,
|
532 |
+
"precision": 0.6347826086956522,
|
533 |
+
"recall": 0.8902439024390244
|
534 |
+
},
|
535 |
+
"eval_UNIT": {
|
536 |
+
"f1": 0.9581293263548878,
|
537 |
+
"number": 5762,
|
538 |
+
"precision": 0.9327744904667982,
|
539 |
+
"recall": 0.9849010760152724
|
540 |
+
},
|
541 |
+
"eval_loss": 0.469653844833374,
|
542 |
+
"eval_overall_accuracy": 0.8341081711913371,
|
543 |
+
"eval_overall_f1": 0.8557420137484835,
|
544 |
+
"eval_overall_precision": 0.8295766366130929,
|
545 |
+
"eval_overall_recall": 0.8836116910229646,
|
546 |
+
"eval_runtime": 7.3483,
|
547 |
+
"eval_samples_per_second": 1157.542,
|
548 |
+
"eval_steps_per_second": 36.199,
|
549 |
+
"step": 10000
|
550 |
+
},
|
551 |
+
{
|
552 |
+
"epoch": 2.08,
|
553 |
+
"learning_rate": 1.535339536725401e-05,
|
554 |
+
"loss": 0.488,
|
555 |
+
"step": 10500
|
556 |
+
},
|
557 |
+
{
|
558 |
+
"epoch": 2.18,
|
559 |
+
"learning_rate": 1.3703557051408963e-05,
|
560 |
+
"loss": 0.4913,
|
561 |
+
"step": 11000
|
562 |
+
},
|
563 |
+
{
|
564 |
+
"epoch": 2.18,
|
565 |
+
"eval_COMMENT": {
|
566 |
+
"f1": 0.6905655320289467,
|
567 |
+
"number": 6879,
|
568 |
+
"precision": 0.6405220633934121,
|
569 |
+
"recall": 0.7490914377089694
|
570 |
+
},
|
571 |
+
"eval_NAME": {
|
572 |
+
"f1": 0.8180196253345228,
|
573 |
+
"number": 8827,
|
574 |
+
"precision": 0.8053573388955978,
|
575 |
+
"recall": 0.8310864393338621
|
576 |
+
},
|
577 |
+
"eval_QTY": {
|
578 |
+
"f1": 0.9862671660424469,
|
579 |
+
"number": 7190,
|
580 |
+
"precision": 0.9836745987825124,
|
581 |
+
"recall": 0.9888734353268428
|
582 |
+
},
|
583 |
+
"eval_RANGE_END": {
|
584 |
+
"f1": 0.7395833333333335,
|
585 |
+
"number": 82,
|
586 |
+
"precision": 0.6454545454545455,
|
587 |
+
"recall": 0.8658536585365854
|
588 |
+
},
|
589 |
+
"eval_UNIT": {
|
590 |
+
"f1": 0.9573139868398851,
|
591 |
+
"number": 5762,
|
592 |
+
"precision": 0.9313854235062377,
|
593 |
+
"recall": 0.9847275251648733
|
594 |
+
},
|
595 |
+
"eval_loss": 0.46854740381240845,
|
596 |
+
"eval_overall_accuracy": 0.8354856607166772,
|
597 |
+
"eval_overall_f1": 0.8544265390061359,
|
598 |
+
"eval_overall_precision": 0.8286685848809835,
|
599 |
+
"eval_overall_recall": 0.8818371607515657,
|
600 |
+
"eval_runtime": 10.1454,
|
601 |
+
"eval_samples_per_second": 838.411,
|
602 |
+
"eval_steps_per_second": 26.219,
|
603 |
+
"step": 11000
|
604 |
+
},
|
605 |
+
{
|
606 |
+
"epoch": 2.28,
|
607 |
+
"learning_rate": 1.2053718735563915e-05,
|
608 |
+
"loss": 0.4817,
|
609 |
+
"step": 11500
|
610 |
+
},
|
611 |
+
{
|
612 |
+
"epoch": 2.38,
|
613 |
+
"learning_rate": 1.0403880419718868e-05,
|
614 |
+
"loss": 0.4769,
|
615 |
+
"step": 12000
|
616 |
+
},
|
617 |
+
{
|
618 |
+
"epoch": 2.38,
|
619 |
+
"eval_COMMENT": {
|
620 |
+
"f1": 0.6879323081055672,
|
621 |
+
"number": 6879,
|
622 |
+
"precision": 0.6392910634048926,
|
623 |
+
"recall": 0.7445849687454572
|
624 |
+
},
|
625 |
+
"eval_NAME": {
|
626 |
+
"f1": 0.8153271236544146,
|
627 |
+
"number": 8827,
|
628 |
+
"precision": 0.8030103274005713,
|
629 |
+
"recall": 0.8280276424606321
|
630 |
+
},
|
631 |
+
"eval_QTY": {
|
632 |
+
"f1": 0.9868704411253908,
|
633 |
+
"number": 7190,
|
634 |
+
"precision": 0.9858431644691187,
|
635 |
+
"recall": 0.9878998609179416
|
636 |
+
},
|
637 |
+
"eval_RANGE_END": {
|
638 |
+
"f1": 0.7628865979381443,
|
639 |
+
"number": 82,
|
640 |
+
"precision": 0.6607142857142857,
|
641 |
+
"recall": 0.9024390243902439
|
642 |
+
},
|
643 |
+
"eval_UNIT": {
|
644 |
+
"f1": 0.958024275118004,
|
645 |
+
"number": 5762,
|
646 |
+
"precision": 0.9313339888561127,
|
647 |
+
"recall": 0.9862894828184658
|
648 |
+
},
|
649 |
+
"eval_loss": 0.465949147939682,
|
650 |
+
"eval_overall_accuracy": 0.8352943427270466,
|
651 |
+
"eval_overall_f1": 0.8533733740488925,
|
652 |
+
"eval_overall_precision": 0.8283169030229588,
|
653 |
+
"eval_overall_recall": 0.8799930410577592,
|
654 |
+
"eval_runtime": 7.683,
|
655 |
+
"eval_samples_per_second": 1107.123,
|
656 |
+
"eval_steps_per_second": 34.622,
|
657 |
+
"step": 12000
|
658 |
+
},
|
659 |
+
{
|
660 |
+
"epoch": 2.47,
|
661 |
+
"learning_rate": 8.75404210387382e-06,
|
662 |
+
"loss": 0.4792,
|
663 |
+
"step": 12500
|
664 |
+
},
|
665 |
+
{
|
666 |
+
"epoch": 2.57,
|
667 |
+
"learning_rate": 7.104203788028774e-06,
|
668 |
+
"loss": 0.4752,
|
669 |
+
"step": 13000
|
670 |
+
},
|
671 |
+
{
|
672 |
+
"epoch": 2.57,
|
673 |
+
"eval_COMMENT": {
|
674 |
+
"f1": 0.6899657235029236,
|
675 |
+
"number": 6879,
|
676 |
+
"precision": 0.641625,
|
677 |
+
"recall": 0.7461840383776712
|
678 |
+
},
|
679 |
+
"eval_NAME": {
|
680 |
+
"f1": 0.8208305425318152,
|
681 |
+
"number": 8827,
|
682 |
+
"precision": 0.8089998899768952,
|
683 |
+
"recall": 0.833012348476266
|
684 |
+
},
|
685 |
+
"eval_QTY": {
|
686 |
+
"f1": 0.9868759113950422,
|
687 |
+
"number": 7190,
|
688 |
+
"precision": 0.9854389127721537,
|
689 |
+
"recall": 0.988317107093185
|
690 |
+
},
|
691 |
+
"eval_RANGE_END": {
|
692 |
+
"f1": 0.7419354838709676,
|
693 |
+
"number": 82,
|
694 |
+
"precision": 0.6634615384615384,
|
695 |
+
"recall": 0.8414634146341463
|
696 |
+
},
|
697 |
+
"eval_UNIT": {
|
698 |
+
"f1": 0.95803428185426,
|
699 |
+
"number": 5762,
|
700 |
+
"precision": 0.932905772076961,
|
701 |
+
"recall": 0.9845539743144741
|
702 |
+
},
|
703 |
+
"eval_loss": 0.46514269709587097,
|
704 |
+
"eval_overall_accuracy": 0.8359448238917906,
|
705 |
+
"eval_overall_f1": 0.8555170958210215,
|
706 |
+
"eval_overall_precision": 0.831031654912252,
|
707 |
+
"eval_overall_recall": 0.8814892136395268,
|
708 |
+
"eval_runtime": 12.3762,
|
709 |
+
"eval_samples_per_second": 687.286,
|
710 |
+
"eval_steps_per_second": 21.493,
|
711 |
+
"step": 13000
|
712 |
+
},
|
713 |
+
{
|
714 |
+
"epoch": 2.67,
|
715 |
+
"learning_rate": 5.4543654721837265e-06,
|
716 |
+
"loss": 0.471,
|
717 |
+
"step": 13500
|
718 |
+
},
|
719 |
+
{
|
720 |
+
"epoch": 2.77,
|
721 |
+
"learning_rate": 3.804527156338679e-06,
|
722 |
+
"loss": 0.4834,
|
723 |
+
"step": 14000
|
724 |
+
},
|
725 |
+
{
|
726 |
+
"epoch": 2.77,
|
727 |
+
"eval_COMMENT": {
|
728 |
+
"f1": 0.694272653939231,
|
729 |
+
"number": 6879,
|
730 |
+
"precision": 0.6457421533074903,
|
731 |
+
"recall": 0.7506905073411834
|
732 |
+
},
|
733 |
+
"eval_NAME": {
|
734 |
+
"f1": 0.8180143981248955,
|
735 |
+
"number": 8827,
|
736 |
+
"precision": 0.8060932688077431,
|
737 |
+
"recall": 0.830293417922284
|
738 |
+
},
|
739 |
+
"eval_QTY": {
|
740 |
+
"f1": 0.9868311616301636,
|
741 |
+
"number": 7190,
|
742 |
+
"precision": 0.9835589941972921,
|
743 |
+
"recall": 0.990125173852573
|
744 |
+
},
|
745 |
+
"eval_RANGE_END": {
|
746 |
+
"f1": 0.7437185929648242,
|
747 |
+
"number": 82,
|
748 |
+
"precision": 0.6324786324786325,
|
749 |
+
"recall": 0.9024390243902439
|
750 |
+
},
|
751 |
+
"eval_UNIT": {
|
752 |
+
"f1": 0.9579080556727119,
|
753 |
+
"number": 5762,
|
754 |
+
"precision": 0.9318890530116527,
|
755 |
+
"recall": 0.9854217285664699
|
756 |
+
},
|
757 |
+
"eval_loss": 0.46282991766929626,
|
758 |
+
"eval_overall_accuracy": 0.8365187778606823,
|
759 |
+
"eval_overall_f1": 0.8557788012213844,
|
760 |
+
"eval_overall_precision": 0.8305989455414743,
|
761 |
+
"eval_overall_recall": 0.8825330549756437,
|
762 |
+
"eval_runtime": 8.3554,
|
763 |
+
"eval_samples_per_second": 1018.028,
|
764 |
+
"eval_steps_per_second": 31.836,
|
765 |
+
"step": 14000
|
766 |
+
},
|
767 |
+
{
|
768 |
+
"epoch": 2.87,
|
769 |
+
"learning_rate": 2.154688840493632e-06,
|
770 |
+
"loss": 0.4731,
|
771 |
+
"step": 14500
|
772 |
+
},
|
773 |
+
{
|
774 |
+
"epoch": 2.97,
|
775 |
+
"learning_rate": 5.048505246485845e-07,
|
776 |
+
"loss": 0.4784,
|
777 |
+
"step": 15000
|
778 |
+
},
|
779 |
+
{
|
780 |
+
"epoch": 2.97,
|
781 |
+
"eval_COMMENT": {
|
782 |
+
"f1": 0.6956345998383185,
|
783 |
+
"number": 6879,
|
784 |
+
"precision": 0.6482109227871939,
|
785 |
+
"recall": 0.7505451373746184
|
786 |
+
},
|
787 |
+
"eval_NAME": {
|
788 |
+
"f1": 0.8189838079285315,
|
789 |
+
"number": 8827,
|
790 |
+
"precision": 0.8074424749532093,
|
791 |
+
"recall": 0.8308598617876969
|
792 |
+
},
|
793 |
+
"eval_QTY": {
|
794 |
+
"f1": 0.9866888519134775,
|
795 |
+
"number": 7190,
|
796 |
+
"precision": 0.9836881393419962,
|
797 |
+
"recall": 0.9897079276773296
|
798 |
+
},
|
799 |
+
"eval_RANGE_END": {
|
800 |
+
"f1": 0.7487179487179487,
|
801 |
+
"number": 82,
|
802 |
+
"precision": 0.6460176991150443,
|
803 |
+
"recall": 0.8902439024390244
|
804 |
+
},
|
805 |
+
"eval_UNIT": {
|
806 |
+
"f1": 0.958502024291498,
|
807 |
+
"number": 5762,
|
808 |
+
"precision": 0.9323925172300623,
|
809 |
+
"recall": 0.9861159319680667
|
810 |
+
},
|
811 |
+
"eval_loss": 0.46261611580848694,
|
812 |
+
"eval_overall_accuracy": 0.8369970728347587,
|
813 |
+
"eval_overall_f1": 0.856607405156258,
|
814 |
+
"eval_overall_precision": 0.8320377841188625,
|
815 |
+
"eval_overall_recall": 0.8826722338204593,
|
816 |
+
"eval_runtime": 11.364,
|
817 |
+
"eval_samples_per_second": 748.503,
|
818 |
+
"eval_steps_per_second": 23.407,
|
819 |
+
"step": 15000
|
820 |
+
},
|
821 |
+
{
|
822 |
+
"epoch": 3.0,
|
823 |
+
"step": 15153,
|
824 |
+
"total_flos": 465391972741860.0,
|
825 |
+
"train_loss": 0.5097090245898089,
|
826 |
+
"train_runtime": 609.9382,
|
827 |
+
"train_samples_per_second": 794.849,
|
828 |
+
"train_steps_per_second": 24.843
|
829 |
+
}
|
830 |
+
],
|
831 |
+
"logging_steps": 500,
|
832 |
+
"max_steps": 15153,
|
833 |
+
"num_train_epochs": 3,
|
834 |
+
"save_steps": 500,
|
835 |
+
"total_flos": 465391972741860.0,
|
836 |
+
"trial_name": null,
|
837 |
+
"trial_params": null
|
838 |
+
}
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a4988f20a86429d6b4f2e2acff74708f521e655269e444f5f6e37d2746b3483e
|
3 |
+
size 4027
|
validation_results.json
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 3.0,
|
3 |
+
"eval_COMMENT": {
|
4 |
+
"f1": 0.6955525606469003,
|
5 |
+
"number": 6879,
|
6 |
+
"precision": 0.6482853912825022,
|
7 |
+
"recall": 0.7502543974414886
|
8 |
+
},
|
9 |
+
"eval_NAME": {
|
10 |
+
"f1": 0.818689293290164,
|
11 |
+
"number": 8827,
|
12 |
+
"precision": 0.8069770001100474,
|
13 |
+
"recall": 0.8307465730146143
|
14 |
+
},
|
15 |
+
"eval_QTY": {
|
16 |
+
"f1": 0.9866888519134775,
|
17 |
+
"number": 7190,
|
18 |
+
"precision": 0.9836881393419962,
|
19 |
+
"recall": 0.9897079276773296
|
20 |
+
},
|
21 |
+
"eval_RANGE_END": {
|
22 |
+
"f1": 0.7551020408163265,
|
23 |
+
"number": 82,
|
24 |
+
"precision": 0.6491228070175439,
|
25 |
+
"recall": 0.9024390243902439
|
26 |
+
},
|
27 |
+
"eval_UNIT": {
|
28 |
+
"f1": 0.958502024291498,
|
29 |
+
"number": 5762,
|
30 |
+
"precision": 0.9323925172300623,
|
31 |
+
"recall": 0.9861159319680667
|
32 |
+
},
|
33 |
+
"eval_loss": 0.46256619691848755,
|
34 |
+
"eval_overall_accuracy": 0.8369588092368325,
|
35 |
+
"eval_overall_f1": 0.8565254094209015,
|
36 |
+
"eval_overall_precision": 0.8319448999672023,
|
37 |
+
"eval_overall_recall": 0.8826026443980515,
|
38 |
+
"eval_runtime": 9.5783,
|
39 |
+
"eval_samples_per_second": 888.052,
|
40 |
+
"eval_steps_per_second": 27.771
|
41 |
+
}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|