napsternxg commited on
Commit
f9d4f2d
·
1 Parent(s): 4575f2d

End of training

Browse files
README.md ADDED
@@ -0,0 +1,82 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model: sentence-transformers/paraphrase-MiniLM-L3-v2
4
+ tags:
5
+ - generated_from_trainer
6
+ datasets:
7
+ - nyt_ingredients
8
+ model-index:
9
+ - name: model
10
+ results: []
11
+ ---
12
+
13
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
14
+ should probably proofread and complete it, then remove this comment. -->
15
+
16
+ # model
17
+
18
+ This model is a fine-tuned version of [sentence-transformers/paraphrase-MiniLM-L3-v2](https://huggingface.co/sentence-transformers/paraphrase-MiniLM-L3-v2) on the nyt_ingredients dataset.
19
+ It achieves the following results on the evaluation set:
20
+ - Loss: 0.4745
21
+ - Comment: {'precision': 0.6381763059701493, 'recall': 0.7527162701141521, 'f1': 0.6907301066447908, 'number': 7271}
22
+ - Name: {'precision': 0.7925138150349286, 'recall': 0.8159081150708458, 'f1': 0.8040408314380917, 'number': 9316}
23
+ - Qty: {'precision': 0.9870301746956062, 'recall': 0.9904382470119522, 'f1': 0.988731274028901, 'number': 7530}
24
+ - Range End: {'precision': 0.6532258064516129, 'recall': 0.9310344827586207, 'f1': 0.7677725118483412, 'number': 87}
25
+ - Unit: {'precision': 0.9281956050758279, 'recall': 0.9844083374364024, 'f1': 0.9554759060135404, 'number': 6093}
26
+ - Overall Precision: 0.8236
27
+ - Overall Recall: 0.8783
28
+ - Overall F1: 0.8501
29
+ - Overall Accuracy: 0.8310
30
+
31
+ ## Model description
32
+
33
+ More information needed
34
+
35
+ ## Intended uses & limitations
36
+
37
+ More information needed
38
+
39
+ ## Training and evaluation data
40
+
41
+ More information needed
42
+
43
+ ## Training procedure
44
+
45
+ ### Training hyperparameters
46
+
47
+ The following hyperparameters were used during training:
48
+ - learning_rate: 5e-05
49
+ - train_batch_size: 32
50
+ - eval_batch_size: 32
51
+ - seed: 42
52
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
53
+ - lr_scheduler_type: linear
54
+ - num_epochs: 3
55
+
56
+ ### Training results
57
+
58
+ | Training Loss | Epoch | Step | Validation Loss | Comment | Name | Qty | Range End | Unit | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
59
+ |:-------------:|:-----:|:-----:|:---------------:|:---------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
60
+ | 0.5473 | 0.2 | 1000 | 0.5439 | {'precision': 0.53239608801956, 'recall': 0.6330862043901729, 'f1': 0.5783916594727406, 'number': 6879} | {'precision': 0.7656748140276302, 'recall': 0.816245610060043, 'f1': 0.7901518890168339, 'number': 8827} | {'precision': 0.9752864835013116, 'recall': 0.9824756606397774, 'f1': 0.9788678722372341, 'number': 7190} | {'precision': 0.6060606060606061, 'recall': 0.7317073170731707, 'f1': 0.6629834254143646, 'number': 82} | {'precision': 0.923214867949136, 'recall': 0.9828184658104825, 'f1': 0.9520847343644923, 'number': 5762} | 0.7837 | 0.8471 | 0.8142 | 0.8057 |
61
+ | 0.5634 | 0.4 | 2000 | 0.5237 | {'precision': 0.5564878997932629, 'recall': 0.6652129670010176, 'f1': 0.6060124486822938, 'number': 6879} | {'precision': 0.7951952610794208, 'recall': 0.8212303160756769, 'f1': 0.8080031209942595, 'number': 8827} | {'precision': 0.9757675891504888, 'recall': 0.9856745479833101, 'f1': 0.9806960492631287, 'number': 7190} | {'precision': 0.5725806451612904, 'recall': 0.8658536585365854, 'f1': 0.6893203883495146, 'number': 82} | {'precision': 0.9235782955841616, 'recall': 0.9836862200624783, 'f1': 0.9526850995882007, 'number': 5762} | 0.7987 | 0.8577 | 0.8272 | 0.8120 |
62
+ | 0.5535 | 0.59 | 3000 | 0.5022 | {'precision': 0.5893937596393404, 'recall': 0.7221979938944614, 'f1': 0.6490723804546643, 'number': 6879} | {'precision': 0.7913148371531966, 'recall': 0.8174917865639515, 'f1': 0.8041903488242506, 'number': 8827} | {'precision': 0.9812708102108768, 'recall': 0.9837273991655077, 'f1': 0.9824975691068204, 'number': 7190} | {'precision': 0.562962962962963, 'recall': 0.926829268292683, 'f1': 0.7004608294930875, 'number': 82} | {'precision': 0.931615460852329, 'recall': 0.9788267962513016, 'f1': 0.9546377792823292, 'number': 5762} | 0.8070 | 0.8689 | 0.8368 | 0.8213 |
63
+ | 0.5366 | 0.79 | 4000 | 0.4892 | {'precision': 0.6037854098771622, 'recall': 0.7002471289431603, 'f1': 0.6484485427744499, 'number': 6879} | {'precision': 0.7957470010905126, 'recall': 0.826668177183641, 'f1': 0.8109129299327665, 'number': 8827} | {'precision': 0.9751884852638794, 'recall': 0.9894297635605007, 'f1': 0.9822575077666552, 'number': 7190} | {'precision': 0.5652173913043478, 'recall': 0.9512195121951219, 'f1': 0.7090909090909091, 'number': 82} | {'precision': 0.9284076015727392, 'recall': 0.9835126692120791, 'f1': 0.955166020562953, 'number': 5762} | 0.8139 | 0.8689 | 0.8405 | 0.8251 |
64
+ | 0.5256 | 0.99 | 5000 | 0.4813 | {'precision': 0.6161294276259346, 'recall': 0.730774821921791, 'f1': 0.6685729485303898, 'number': 6879} | {'precision': 0.7992788461538461, 'recall': 0.8287073750991277, 'f1': 0.8137271260915513, 'number': 8827} | {'precision': 0.9784340659340659, 'recall': 0.9906815020862308, 'f1': 0.9845196959225985, 'number': 7190} | {'precision': 0.6330275229357798, 'recall': 0.8414634146341463, 'f1': 0.7225130890052357, 'number': 82} | {'precision': 0.9291687161829808, 'recall': 0.9835126692120791, 'f1': 0.9555686704325098, 'number': 5762} | 0.8182 | 0.8769 | 0.8465 | 0.8299 |
65
+ | 0.5079 | 1.19 | 6000 | 0.4766 | {'precision': 0.6228698444060262, 'recall': 0.7332461113533943, 'f1': 0.6735661347399347, 'number': 6879} | {'precision': 0.8044889426779623, 'recall': 0.82836750877988, 'f1': 0.8162536280419737, 'number': 8827} | {'precision': 0.9840742279462679, 'recall': 0.988317107093185, 'f1': 0.9861911040177642, 'number': 7190} | {'precision': 0.6306306306306306, 'recall': 0.8536585365853658, 'f1': 0.7253886010362693, 'number': 82} | {'precision': 0.928082191780822, 'recall': 0.9876778896216591, 'f1': 0.9569530855893728, 'number': 5762} | 0.8229 | 0.8776 | 0.8494 | 0.8313 |
66
+ | 0.5047 | 1.39 | 7000 | 0.4780 | {'precision': 0.6244848484848485, 'recall': 0.7489460677424045, 'f1': 0.6810760790534734, 'number': 6879} | {'precision': 0.8084753263996459, 'recall': 0.8278010649144669, 'f1': 0.8180240694094598, 'number': 8827} | {'precision': 0.9799036476256022, 'recall': 0.990125173852573, 'f1': 0.9849878934624697, 'number': 7190} | {'precision': 0.5923076923076923, 'recall': 0.9390243902439024, 'f1': 0.7264150943396225, 'number': 82} | {'precision': 0.9348113831899404, 'recall': 0.9805623047552933, 'f1': 0.9571404370658986, 'number': 5762} | 0.8235 | 0.8805 | 0.8511 | 0.8305 |
67
+ | 0.4912 | 1.58 | 8000 | 0.4725 | {'precision': 0.6316635745207174, 'recall': 0.7424044192469835, 'f1': 0.6825715049452018, 'number': 6879} | {'precision': 0.8068570168669386, 'recall': 0.8291605301914581, 'f1': 0.8178567437702537, 'number': 8827} | {'precision': 0.9846047156726768, 'recall': 0.9873435326842838, 'f1': 0.9859722222222222, 'number': 7190} | {'precision': 0.6428571428571429, 'recall': 0.8780487804878049, 'f1': 0.7422680412371134, 'number': 82} | {'precision': 0.9298820445609436, 'recall': 0.9850746268656716, 'f1': 0.9566829597168379, 'number': 5762} | 0.8264 | 0.8794 | 0.8521 | 0.8342 |
68
+ | 0.4955 | 1.78 | 9000 | 0.4725 | {'precision': 0.6421661012690036, 'recall': 0.7429858991132432, 'f1': 0.688906860762906, 'number': 6879} | {'precision': 0.8048323036187114, 'recall': 0.8264415996374759, 'f1': 0.8154938237102454, 'number': 8827} | {'precision': 0.9815401570464252, 'recall': 0.9909596662030598, 'f1': 0.9862274205827393, 'number': 7190} | {'precision': 0.582089552238806, 'recall': 0.9512195121951219, 'f1': 0.7222222222222221, 'number': 82} | {'precision': 0.9313403416557161, 'recall': 0.9840333217632766, 'f1': 0.9569620253164556, 'number': 5762} | 0.8287 | 0.8796 | 0.8534 | 0.8332 |
69
+ | 0.4917 | 1.98 | 10000 | 0.4697 | {'precision': 0.6389365351629502, 'recall': 0.7581043756359936, 'f1': 0.6934379363074265, 'number': 6879} | {'precision': 0.8106822956983302, 'recall': 0.8305199954684491, 'f1': 0.8204812534974818, 'number': 8827} | {'precision': 0.9851553829078802, 'recall': 0.9876216968011127, 'f1': 0.9863869981941935, 'number': 7190} | {'precision': 0.6347826086956522, 'recall': 0.8902439024390244, 'f1': 0.7411167512690355, 'number': 82} | {'precision': 0.9327744904667982, 'recall': 0.9849010760152724, 'f1': 0.9581293263548878, 'number': 5762} | 0.8296 | 0.8836 | 0.8557 | 0.8341 |
70
+ | 0.4913 | 2.18 | 11000 | 0.4685 | {'precision': 0.6405220633934121, 'recall': 0.7490914377089694, 'f1': 0.6905655320289467, 'number': 6879} | {'precision': 0.8053573388955978, 'recall': 0.8310864393338621, 'f1': 0.8180196253345228, 'number': 8827} | {'precision': 0.9836745987825124, 'recall': 0.9888734353268428, 'f1': 0.9862671660424469, 'number': 7190} | {'precision': 0.6454545454545455, 'recall': 0.8658536585365854, 'f1': 0.7395833333333335, 'number': 82} | {'precision': 0.9313854235062377, 'recall': 0.9847275251648733, 'f1': 0.9573139868398851, 'number': 5762} | 0.8287 | 0.8818 | 0.8544 | 0.8355 |
71
+ | 0.4769 | 2.38 | 12000 | 0.4659 | {'precision': 0.6392910634048926, 'recall': 0.7445849687454572, 'f1': 0.6879323081055672, 'number': 6879} | {'precision': 0.8030103274005713, 'recall': 0.8280276424606321, 'f1': 0.8153271236544146, 'number': 8827} | {'precision': 0.9858431644691187, 'recall': 0.9878998609179416, 'f1': 0.9868704411253908, 'number': 7190} | {'precision': 0.6607142857142857, 'recall': 0.9024390243902439, 'f1': 0.7628865979381443, 'number': 82} | {'precision': 0.9313339888561127, 'recall': 0.9862894828184658, 'f1': 0.958024275118004, 'number': 5762} | 0.8283 | 0.8800 | 0.8534 | 0.8353 |
72
+ | 0.4752 | 2.57 | 13000 | 0.4651 | {'precision': 0.641625, 'recall': 0.7461840383776712, 'f1': 0.6899657235029236, 'number': 6879} | {'precision': 0.8089998899768952, 'recall': 0.833012348476266, 'f1': 0.8208305425318152, 'number': 8827} | {'precision': 0.9854389127721537, 'recall': 0.988317107093185, 'f1': 0.9868759113950422, 'number': 7190} | {'precision': 0.6634615384615384, 'recall': 0.8414634146341463, 'f1': 0.7419354838709676, 'number': 82} | {'precision': 0.932905772076961, 'recall': 0.9845539743144741, 'f1': 0.95803428185426, 'number': 5762} | 0.8310 | 0.8815 | 0.8555 | 0.8359 |
73
+ | 0.4834 | 2.77 | 14000 | 0.4628 | {'precision': 0.6457421533074903, 'recall': 0.7506905073411834, 'f1': 0.694272653939231, 'number': 6879} | {'precision': 0.8060932688077431, 'recall': 0.830293417922284, 'f1': 0.8180143981248955, 'number': 8827} | {'precision': 0.9835589941972921, 'recall': 0.990125173852573, 'f1': 0.9868311616301636, 'number': 7190} | {'precision': 0.6324786324786325, 'recall': 0.9024390243902439, 'f1': 0.7437185929648242, 'number': 82} | {'precision': 0.9318890530116527, 'recall': 0.9854217285664699, 'f1': 0.9579080556727119, 'number': 5762} | 0.8306 | 0.8825 | 0.8558 | 0.8365 |
74
+ | 0.4784 | 2.97 | 15000 | 0.4626 | {'precision': 0.6482109227871939, 'recall': 0.7505451373746184, 'f1': 0.6956345998383185, 'number': 6879} | {'precision': 0.8074424749532093, 'recall': 0.8308598617876969, 'f1': 0.8189838079285315, 'number': 8827} | {'precision': 0.9836881393419962, 'recall': 0.9897079276773296, 'f1': 0.9866888519134775, 'number': 7190} | {'precision': 0.6460176991150443, 'recall': 0.8902439024390244, 'f1': 0.7487179487179487, 'number': 82} | {'precision': 0.9323925172300623, 'recall': 0.9861159319680667, 'f1': 0.958502024291498, 'number': 5762} | 0.8320 | 0.8827 | 0.8566 | 0.8370 |
75
+
76
+
77
+ ### Framework versions
78
+
79
+ - Transformers 4.33.3
80
+ - Pytorch 2.0.1+cu118
81
+ - Datasets 2.14.5
82
+ - Tokenizers 0.13.3
all_results.json ADDED
@@ -0,0 +1,41 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 3.0,
3
+ "eval_COMMENT": {
4
+ "f1": 0.6907301066447908,
5
+ "number": 7271,
6
+ "precision": 0.6381763059701493,
7
+ "recall": 0.7527162701141521
8
+ },
9
+ "eval_NAME": {
10
+ "f1": 0.8040408314380917,
11
+ "number": 9316,
12
+ "precision": 0.7925138150349286,
13
+ "recall": 0.8159081150708458
14
+ },
15
+ "eval_QTY": {
16
+ "f1": 0.988731274028901,
17
+ "number": 7530,
18
+ "precision": 0.9870301746956062,
19
+ "recall": 0.9904382470119522
20
+ },
21
+ "eval_RANGE_END": {
22
+ "f1": 0.7677725118483412,
23
+ "number": 87,
24
+ "precision": 0.6532258064516129,
25
+ "recall": 0.9310344827586207
26
+ },
27
+ "eval_UNIT": {
28
+ "f1": 0.9554759060135404,
29
+ "number": 6093,
30
+ "precision": 0.9281956050758279,
31
+ "recall": 0.9844083374364024
32
+ },
33
+ "eval_loss": 0.4744836091995239,
34
+ "eval_overall_accuracy": 0.8310309334200119,
35
+ "eval_overall_f1": 0.8501102130786186,
36
+ "eval_overall_precision": 0.8236404716951933,
37
+ "eval_overall_recall": 0.8783377892200548,
38
+ "eval_runtime": 10.5249,
39
+ "eval_samples_per_second": 850.746,
40
+ "eval_steps_per_second": 26.604
41
+ }
config.json ADDED
@@ -0,0 +1,52 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "sentence-transformers/paraphrase-MiniLM-L3-v2",
3
+ "architectures": [
4
+ "BertForTokenClassification"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 384,
12
+ "id2label": {
13
+ "0": "O",
14
+ "1": "B-COMMENT",
15
+ "2": "I-COMMENT",
16
+ "3": "B-NAME",
17
+ "4": "I-NAME",
18
+ "5": "B-RANGE_END",
19
+ "6": "I-RANGE_END",
20
+ "7": "B-QTY",
21
+ "8": "I-QTY",
22
+ "9": "B-UNIT",
23
+ "10": "I-UNIT"
24
+ },
25
+ "initializer_range": 0.02,
26
+ "intermediate_size": 1536,
27
+ "label2id": {
28
+ "B-COMMENT": 1,
29
+ "B-NAME": 3,
30
+ "B-QTY": 7,
31
+ "B-RANGE_END": 5,
32
+ "B-UNIT": 9,
33
+ "I-COMMENT": 2,
34
+ "I-NAME": 4,
35
+ "I-QTY": 8,
36
+ "I-RANGE_END": 6,
37
+ "I-UNIT": 10,
38
+ "O": 0
39
+ },
40
+ "layer_norm_eps": 1e-12,
41
+ "max_position_embeddings": 512,
42
+ "model_type": "bert",
43
+ "num_attention_heads": 12,
44
+ "num_hidden_layers": 3,
45
+ "pad_token_id": 0,
46
+ "position_embedding_type": "absolute",
47
+ "torch_dtype": "float32",
48
+ "transformers_version": "4.33.3",
49
+ "type_vocab_size": 2,
50
+ "use_cache": true,
51
+ "vocab_size": 30522
52
+ }
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bff7143eb05a565f82929e51f35098a8de7fbbc1b51db4d80570171ed418fec0
3
+ size 69003222
special_tokens_map.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": "[CLS]",
3
+ "mask_token": "[MASK]",
4
+ "pad_token": "[PAD]",
5
+ "sep_token": "[SEP]",
6
+ "unk_token": "[UNK]"
7
+ }
test_results.json ADDED
@@ -0,0 +1,41 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 3.0,
3
+ "eval_COMMENT": {
4
+ "f1": 0.6907301066447908,
5
+ "number": 7271,
6
+ "precision": 0.6381763059701493,
7
+ "recall": 0.7527162701141521
8
+ },
9
+ "eval_NAME": {
10
+ "f1": 0.8040408314380917,
11
+ "number": 9316,
12
+ "precision": 0.7925138150349286,
13
+ "recall": 0.8159081150708458
14
+ },
15
+ "eval_QTY": {
16
+ "f1": 0.988731274028901,
17
+ "number": 7530,
18
+ "precision": 0.9870301746956062,
19
+ "recall": 0.9904382470119522
20
+ },
21
+ "eval_RANGE_END": {
22
+ "f1": 0.7677725118483412,
23
+ "number": 87,
24
+ "precision": 0.6532258064516129,
25
+ "recall": 0.9310344827586207
26
+ },
27
+ "eval_UNIT": {
28
+ "f1": 0.9554759060135404,
29
+ "number": 6093,
30
+ "precision": 0.9281956050758279,
31
+ "recall": 0.9844083374364024
32
+ },
33
+ "eval_loss": 0.4744836091995239,
34
+ "eval_overall_accuracy": 0.8310309334200119,
35
+ "eval_overall_f1": 0.8501102130786186,
36
+ "eval_overall_precision": 0.8236404716951933,
37
+ "eval_overall_recall": 0.8783377892200548,
38
+ "eval_runtime": 10.5249,
39
+ "eval_samples_per_second": 850.746,
40
+ "eval_steps_per_second": 26.604
41
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,22 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "clean_up_tokenization_spaces": true,
3
+ "cls_token": "[CLS]",
4
+ "do_basic_tokenize": true,
5
+ "do_lower_case": true,
6
+ "mask_token": "[MASK]",
7
+ "max_length": 128,
8
+ "model_max_length": 512,
9
+ "never_split": null,
10
+ "pad_to_multiple_of": null,
11
+ "pad_token": "[PAD]",
12
+ "pad_token_type_id": 0,
13
+ "padding_side": "right",
14
+ "sep_token": "[SEP]",
15
+ "stride": 0,
16
+ "strip_accents": null,
17
+ "tokenize_chinese_chars": true,
18
+ "tokenizer_class": "BertTokenizer",
19
+ "truncation_side": "right",
20
+ "truncation_strategy": "longest_first",
21
+ "unk_token": "[UNK]"
22
+ }
train_results.json ADDED
@@ -0,0 +1,41 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 3.0,
3
+ "eval_COMMENT": {
4
+ "f1": 0.7121685446922926,
5
+ "number": 129638,
6
+ "precision": 0.657763516472026,
7
+ "recall": 0.776385010567889
8
+ },
9
+ "eval_NAME": {
10
+ "f1": 0.8171967248248062,
11
+ "number": 167657,
12
+ "precision": 0.8046552501647722,
13
+ "recall": 0.8301353358344715
14
+ },
15
+ "eval_QTY": {
16
+ "f1": 0.9863004635126243,
17
+ "number": 135744,
18
+ "precision": 0.9842563587143915,
19
+ "recall": 0.9883530763790664
20
+ },
21
+ "eval_RANGE_END": {
22
+ "f1": 0.7583212735166425,
23
+ "number": 1695,
24
+ "precision": 0.6413708690330477,
25
+ "recall": 0.9274336283185841
26
+ },
27
+ "eval_UNIT": {
28
+ "f1": 0.9554243516107167,
29
+ "number": 108698,
30
+ "precision": 0.9270964950237992,
31
+ "recall": 0.9855379123810926
32
+ },
33
+ "eval_loss": 0.45067697763442993,
34
+ "eval_overall_accuracy": 0.8416610561221927,
35
+ "eval_overall_f1": 0.8590856303810985,
36
+ "eval_overall_precision": 0.8318004869953627,
37
+ "eval_overall_recall": 0.8882215254162434,
38
+ "eval_runtime": 159.8391,
39
+ "eval_samples_per_second": 1011.035,
40
+ "eval_steps_per_second": 31.601
41
+ }
trainer_state.json ADDED
@@ -0,0 +1,838 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 3.0,
5
+ "eval_steps": 1000,
6
+ "global_step": 15153,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.1,
13
+ "learning_rate": 4.835016168415495e-05,
14
+ "loss": 0.5803,
15
+ "step": 500
16
+ },
17
+ {
18
+ "epoch": 0.2,
19
+ "learning_rate": 4.670032336830991e-05,
20
+ "loss": 0.5473,
21
+ "step": 1000
22
+ },
23
+ {
24
+ "epoch": 0.2,
25
+ "eval_COMMENT": {
26
+ "f1": 0.5783916594727406,
27
+ "number": 6879,
28
+ "precision": 0.53239608801956,
29
+ "recall": 0.6330862043901729
30
+ },
31
+ "eval_NAME": {
32
+ "f1": 0.7901518890168339,
33
+ "number": 8827,
34
+ "precision": 0.7656748140276302,
35
+ "recall": 0.816245610060043
36
+ },
37
+ "eval_QTY": {
38
+ "f1": 0.9788678722372341,
39
+ "number": 7190,
40
+ "precision": 0.9752864835013116,
41
+ "recall": 0.9824756606397774
42
+ },
43
+ "eval_RANGE_END": {
44
+ "f1": 0.6629834254143646,
45
+ "number": 82,
46
+ "precision": 0.6060606060606061,
47
+ "recall": 0.7317073170731707
48
+ },
49
+ "eval_UNIT": {
50
+ "f1": 0.9520847343644923,
51
+ "number": 5762,
52
+ "precision": 0.923214867949136,
53
+ "recall": 0.9828184658104825
54
+ },
55
+ "eval_loss": 0.5438547134399414,
56
+ "eval_overall_accuracy": 0.8057357133291243,
57
+ "eval_overall_f1": 0.8141992442229877,
58
+ "eval_overall_precision": 0.783718534732505,
59
+ "eval_overall_recall": 0.8471468336812804,
60
+ "eval_runtime": 7.0491,
61
+ "eval_samples_per_second": 1206.676,
62
+ "eval_steps_per_second": 37.735,
63
+ "step": 1000
64
+ },
65
+ {
66
+ "epoch": 0.3,
67
+ "learning_rate": 4.505048505246486e-05,
68
+ "loss": 0.5755,
69
+ "step": 1500
70
+ },
71
+ {
72
+ "epoch": 0.4,
73
+ "learning_rate": 4.3400646736619816e-05,
74
+ "loss": 0.5634,
75
+ "step": 2000
76
+ },
77
+ {
78
+ "epoch": 0.4,
79
+ "eval_COMMENT": {
80
+ "f1": 0.6060124486822938,
81
+ "number": 6879,
82
+ "precision": 0.5564878997932629,
83
+ "recall": 0.6652129670010176
84
+ },
85
+ "eval_NAME": {
86
+ "f1": 0.8080031209942595,
87
+ "number": 8827,
88
+ "precision": 0.7951952610794208,
89
+ "recall": 0.8212303160756769
90
+ },
91
+ "eval_QTY": {
92
+ "f1": 0.9806960492631287,
93
+ "number": 7190,
94
+ "precision": 0.9757675891504888,
95
+ "recall": 0.9856745479833101
96
+ },
97
+ "eval_RANGE_END": {
98
+ "f1": 0.6893203883495146,
99
+ "number": 82,
100
+ "precision": 0.5725806451612904,
101
+ "recall": 0.8658536585365854
102
+ },
103
+ "eval_UNIT": {
104
+ "f1": 0.9526850995882007,
105
+ "number": 5762,
106
+ "precision": 0.9235782955841616,
107
+ "recall": 0.9836862200624783
108
+ },
109
+ "eval_loss": 0.5236877799034119,
110
+ "eval_overall_accuracy": 0.8120300751879699,
111
+ "eval_overall_f1": 0.8271731288693521,
112
+ "eval_overall_precision": 0.7987233904675501,
113
+ "eval_overall_recall": 0.8577244258872652,
114
+ "eval_runtime": 10.0134,
115
+ "eval_samples_per_second": 849.459,
116
+ "eval_steps_per_second": 26.564,
117
+ "step": 2000
118
+ },
119
+ {
120
+ "epoch": 0.49,
121
+ "learning_rate": 4.1750808420774766e-05,
122
+ "loss": 0.5454,
123
+ "step": 2500
124
+ },
125
+ {
126
+ "epoch": 0.59,
127
+ "learning_rate": 4.010097010492972e-05,
128
+ "loss": 0.5535,
129
+ "step": 3000
130
+ },
131
+ {
132
+ "epoch": 0.59,
133
+ "eval_COMMENT": {
134
+ "f1": 0.6490723804546643,
135
+ "number": 6879,
136
+ "precision": 0.5893937596393404,
137
+ "recall": 0.7221979938944614
138
+ },
139
+ "eval_NAME": {
140
+ "f1": 0.8041903488242506,
141
+ "number": 8827,
142
+ "precision": 0.7913148371531966,
143
+ "recall": 0.8174917865639515
144
+ },
145
+ "eval_QTY": {
146
+ "f1": 0.9824975691068204,
147
+ "number": 7190,
148
+ "precision": 0.9812708102108768,
149
+ "recall": 0.9837273991655077
150
+ },
151
+ "eval_RANGE_END": {
152
+ "f1": 0.7004608294930875,
153
+ "number": 82,
154
+ "precision": 0.562962962962963,
155
+ "recall": 0.926829268292683
156
+ },
157
+ "eval_UNIT": {
158
+ "f1": 0.9546377792823292,
159
+ "number": 5762,
160
+ "precision": 0.931615460852329,
161
+ "recall": 0.9788267962513016
162
+ },
163
+ "eval_loss": 0.5021980404853821,
164
+ "eval_overall_accuracy": 0.8213281294840153,
165
+ "eval_overall_f1": 0.8368266733685181,
166
+ "eval_overall_precision": 0.8070124414283406,
167
+ "eval_overall_recall": 0.86892832289492,
168
+ "eval_runtime": 7.7747,
169
+ "eval_samples_per_second": 1094.065,
170
+ "eval_steps_per_second": 34.214,
171
+ "step": 3000
172
+ },
173
+ {
174
+ "epoch": 0.69,
175
+ "learning_rate": 3.845113178908467e-05,
176
+ "loss": 0.5391,
177
+ "step": 3500
178
+ },
179
+ {
180
+ "epoch": 0.79,
181
+ "learning_rate": 3.680129347323962e-05,
182
+ "loss": 0.5366,
183
+ "step": 4000
184
+ },
185
+ {
186
+ "epoch": 0.79,
187
+ "eval_COMMENT": {
188
+ "f1": 0.6484485427744499,
189
+ "number": 6879,
190
+ "precision": 0.6037854098771622,
191
+ "recall": 0.7002471289431603
192
+ },
193
+ "eval_NAME": {
194
+ "f1": 0.8109129299327665,
195
+ "number": 8827,
196
+ "precision": 0.7957470010905126,
197
+ "recall": 0.826668177183641
198
+ },
199
+ "eval_QTY": {
200
+ "f1": 0.9822575077666552,
201
+ "number": 7190,
202
+ "precision": 0.9751884852638794,
203
+ "recall": 0.9894297635605007
204
+ },
205
+ "eval_RANGE_END": {
206
+ "f1": 0.7090909090909091,
207
+ "number": 82,
208
+ "precision": 0.5652173913043478,
209
+ "recall": 0.9512195121951219
210
+ },
211
+ "eval_UNIT": {
212
+ "f1": 0.955166020562953,
213
+ "number": 5762,
214
+ "precision": 0.9284076015727392,
215
+ "recall": 0.9835126692120791
216
+ },
217
+ "eval_loss": 0.4891820251941681,
218
+ "eval_overall_accuracy": 0.8250970938797375,
219
+ "eval_overall_f1": 0.8404880100967607,
220
+ "eval_overall_precision": 0.8138504155124654,
221
+ "eval_overall_recall": 0.86892832289492,
222
+ "eval_runtime": 9.7418,
223
+ "eval_samples_per_second": 873.148,
224
+ "eval_steps_per_second": 27.305,
225
+ "step": 4000
226
+ },
227
+ {
228
+ "epoch": 0.89,
229
+ "learning_rate": 3.515145515739457e-05,
230
+ "loss": 0.5234,
231
+ "step": 4500
232
+ },
233
+ {
234
+ "epoch": 0.99,
235
+ "learning_rate": 3.3501616841549535e-05,
236
+ "loss": 0.5256,
237
+ "step": 5000
238
+ },
239
+ {
240
+ "epoch": 0.99,
241
+ "eval_COMMENT": {
242
+ "f1": 0.6685729485303898,
243
+ "number": 6879,
244
+ "precision": 0.6161294276259346,
245
+ "recall": 0.730774821921791
246
+ },
247
+ "eval_NAME": {
248
+ "f1": 0.8137271260915513,
249
+ "number": 8827,
250
+ "precision": 0.7992788461538461,
251
+ "recall": 0.8287073750991277
252
+ },
253
+ "eval_QTY": {
254
+ "f1": 0.9845196959225985,
255
+ "number": 7190,
256
+ "precision": 0.9784340659340659,
257
+ "recall": 0.9906815020862308
258
+ },
259
+ "eval_RANGE_END": {
260
+ "f1": 0.7225130890052357,
261
+ "number": 82,
262
+ "precision": 0.6330275229357798,
263
+ "recall": 0.8414634146341463
264
+ },
265
+ "eval_UNIT": {
266
+ "f1": 0.9555686704325098,
267
+ "number": 5762,
268
+ "precision": 0.9291687161829808,
269
+ "recall": 0.9835126692120791
270
+ },
271
+ "eval_loss": 0.4813206195831299,
272
+ "eval_overall_accuracy": 0.8299374390173908,
273
+ "eval_overall_f1": 0.8465375636137659,
274
+ "eval_overall_precision": 0.8182408519757135,
275
+ "eval_overall_recall": 0.8768615170494085,
276
+ "eval_runtime": 8.6073,
277
+ "eval_samples_per_second": 988.232,
278
+ "eval_steps_per_second": 30.904,
279
+ "step": 5000
280
+ },
281
+ {
282
+ "epoch": 1.09,
283
+ "learning_rate": 3.1851778525704485e-05,
284
+ "loss": 0.5108,
285
+ "step": 5500
286
+ },
287
+ {
288
+ "epoch": 1.19,
289
+ "learning_rate": 3.0201940209859435e-05,
290
+ "loss": 0.5079,
291
+ "step": 6000
292
+ },
293
+ {
294
+ "epoch": 1.19,
295
+ "eval_COMMENT": {
296
+ "f1": 0.6735661347399347,
297
+ "number": 6879,
298
+ "precision": 0.6228698444060262,
299
+ "recall": 0.7332461113533943
300
+ },
301
+ "eval_NAME": {
302
+ "f1": 0.8162536280419737,
303
+ "number": 8827,
304
+ "precision": 0.8044889426779623,
305
+ "recall": 0.82836750877988
306
+ },
307
+ "eval_QTY": {
308
+ "f1": 0.9861911040177642,
309
+ "number": 7190,
310
+ "precision": 0.9840742279462679,
311
+ "recall": 0.988317107093185
312
+ },
313
+ "eval_RANGE_END": {
314
+ "f1": 0.7253886010362693,
315
+ "number": 82,
316
+ "precision": 0.6306306306306306,
317
+ "recall": 0.8536585365853658
318
+ },
319
+ "eval_UNIT": {
320
+ "f1": 0.9569530855893728,
321
+ "number": 5762,
322
+ "precision": 0.928082191780822,
323
+ "recall": 0.9876778896216591
324
+ },
325
+ "eval_loss": 0.4765673577785492,
326
+ "eval_overall_accuracy": 0.8312575331458417,
327
+ "eval_overall_f1": 0.8493879544038659,
328
+ "eval_overall_precision": 0.8229095298685198,
329
+ "eval_overall_recall": 0.8776270006958943,
330
+ "eval_runtime": 12.1667,
331
+ "eval_samples_per_second": 699.123,
332
+ "eval_steps_per_second": 21.863,
333
+ "step": 6000
334
+ },
335
+ {
336
+ "epoch": 1.29,
337
+ "learning_rate": 2.855210189401439e-05,
338
+ "loss": 0.5028,
339
+ "step": 6500
340
+ },
341
+ {
342
+ "epoch": 1.39,
343
+ "learning_rate": 2.690226357816934e-05,
344
+ "loss": 0.5047,
345
+ "step": 7000
346
+ },
347
+ {
348
+ "epoch": 1.39,
349
+ "eval_COMMENT": {
350
+ "f1": 0.6810760790534734,
351
+ "number": 6879,
352
+ "precision": 0.6244848484848485,
353
+ "recall": 0.7489460677424045
354
+ },
355
+ "eval_NAME": {
356
+ "f1": 0.8180240694094598,
357
+ "number": 8827,
358
+ "precision": 0.8084753263996459,
359
+ "recall": 0.8278010649144669
360
+ },
361
+ "eval_QTY": {
362
+ "f1": 0.9849878934624697,
363
+ "number": 7190,
364
+ "precision": 0.9799036476256022,
365
+ "recall": 0.990125173852573
366
+ },
367
+ "eval_RANGE_END": {
368
+ "f1": 0.7264150943396225,
369
+ "number": 82,
370
+ "precision": 0.5923076923076923,
371
+ "recall": 0.9390243902439024
372
+ },
373
+ "eval_UNIT": {
374
+ "f1": 0.9571404370658986,
375
+ "number": 5762,
376
+ "precision": 0.9348113831899404,
377
+ "recall": 0.9805623047552933
378
+ },
379
+ "eval_loss": 0.47799554467201233,
380
+ "eval_overall_accuracy": 0.8304731293883564,
381
+ "eval_overall_f1": 0.8510602519044176,
382
+ "eval_overall_precision": 0.8235428125101703,
383
+ "eval_overall_recall": 0.8804801670146137,
384
+ "eval_runtime": 8.0121,
385
+ "eval_samples_per_second": 1061.644,
386
+ "eval_steps_per_second": 33.2,
387
+ "step": 7000
388
+ },
389
+ {
390
+ "epoch": 1.48,
391
+ "learning_rate": 2.5252425262324292e-05,
392
+ "loss": 0.5058,
393
+ "step": 7500
394
+ },
395
+ {
396
+ "epoch": 1.58,
397
+ "learning_rate": 2.3602586946479245e-05,
398
+ "loss": 0.4912,
399
+ "step": 8000
400
+ },
401
+ {
402
+ "epoch": 1.58,
403
+ "eval_COMMENT": {
404
+ "f1": 0.6825715049452018,
405
+ "number": 6879,
406
+ "precision": 0.6316635745207174,
407
+ "recall": 0.7424044192469835
408
+ },
409
+ "eval_NAME": {
410
+ "f1": 0.8178567437702537,
411
+ "number": 8827,
412
+ "precision": 0.8068570168669386,
413
+ "recall": 0.8291605301914581
414
+ },
415
+ "eval_QTY": {
416
+ "f1": 0.9859722222222222,
417
+ "number": 7190,
418
+ "precision": 0.9846047156726768,
419
+ "recall": 0.9873435326842838
420
+ },
421
+ "eval_RANGE_END": {
422
+ "f1": 0.7422680412371134,
423
+ "number": 82,
424
+ "precision": 0.6428571428571429,
425
+ "recall": 0.8780487804878049
426
+ },
427
+ "eval_UNIT": {
428
+ "f1": 0.9566829597168379,
429
+ "number": 5762,
430
+ "precision": 0.9298820445609436,
431
+ "recall": 0.9850746268656716
432
+ },
433
+ "eval_loss": 0.4724733531475067,
434
+ "eval_overall_accuracy": 0.8342229619851155,
435
+ "eval_overall_f1": 0.8520616297495027,
436
+ "eval_overall_precision": 0.8264011510038585,
437
+ "eval_overall_recall": 0.8793667362560891,
438
+ "eval_runtime": 10.131,
439
+ "eval_samples_per_second": 839.6,
440
+ "eval_steps_per_second": 26.256,
441
+ "step": 8000
442
+ },
443
+ {
444
+ "epoch": 1.68,
445
+ "learning_rate": 2.19527486306342e-05,
446
+ "loss": 0.4994,
447
+ "step": 8500
448
+ },
449
+ {
450
+ "epoch": 1.78,
451
+ "learning_rate": 2.0302910314789152e-05,
452
+ "loss": 0.4955,
453
+ "step": 9000
454
+ },
455
+ {
456
+ "epoch": 1.78,
457
+ "eval_COMMENT": {
458
+ "f1": 0.688906860762906,
459
+ "number": 6879,
460
+ "precision": 0.6421661012690036,
461
+ "recall": 0.7429858991132432
462
+ },
463
+ "eval_NAME": {
464
+ "f1": 0.8154938237102454,
465
+ "number": 8827,
466
+ "precision": 0.8048323036187114,
467
+ "recall": 0.8264415996374759
468
+ },
469
+ "eval_QTY": {
470
+ "f1": 0.9862274205827393,
471
+ "number": 7190,
472
+ "precision": 0.9815401570464252,
473
+ "recall": 0.9909596662030598
474
+ },
475
+ "eval_RANGE_END": {
476
+ "f1": 0.7222222222222221,
477
+ "number": 82,
478
+ "precision": 0.582089552238806,
479
+ "recall": 0.9512195121951219
480
+ },
481
+ "eval_UNIT": {
482
+ "f1": 0.9569620253164556,
483
+ "number": 5762,
484
+ "precision": 0.9313403416557161,
485
+ "recall": 0.9840333217632766
486
+ },
487
+ "eval_loss": 0.47245046496391296,
488
+ "eval_overall_accuracy": 0.8331898448411104,
489
+ "eval_overall_f1": 0.8533859968942002,
490
+ "eval_overall_precision": 0.8287109887227905,
491
+ "eval_overall_recall": 0.8795755045233125,
492
+ "eval_runtime": 9.9308,
493
+ "eval_samples_per_second": 856.526,
494
+ "eval_steps_per_second": 26.785,
495
+ "step": 9000
496
+ },
497
+ {
498
+ "epoch": 1.88,
499
+ "learning_rate": 1.8653071998944105e-05,
500
+ "loss": 0.5006,
501
+ "step": 9500
502
+ },
503
+ {
504
+ "epoch": 1.98,
505
+ "learning_rate": 1.700323368309906e-05,
506
+ "loss": 0.4917,
507
+ "step": 10000
508
+ },
509
+ {
510
+ "epoch": 1.98,
511
+ "eval_COMMENT": {
512
+ "f1": 0.6934379363074265,
513
+ "number": 6879,
514
+ "precision": 0.6389365351629502,
515
+ "recall": 0.7581043756359936
516
+ },
517
+ "eval_NAME": {
518
+ "f1": 0.8204812534974818,
519
+ "number": 8827,
520
+ "precision": 0.8106822956983302,
521
+ "recall": 0.8305199954684491
522
+ },
523
+ "eval_QTY": {
524
+ "f1": 0.9863869981941935,
525
+ "number": 7190,
526
+ "precision": 0.9851553829078802,
527
+ "recall": 0.9876216968011127
528
+ },
529
+ "eval_RANGE_END": {
530
+ "f1": 0.7411167512690355,
531
+ "number": 82,
532
+ "precision": 0.6347826086956522,
533
+ "recall": 0.8902439024390244
534
+ },
535
+ "eval_UNIT": {
536
+ "f1": 0.9581293263548878,
537
+ "number": 5762,
538
+ "precision": 0.9327744904667982,
539
+ "recall": 0.9849010760152724
540
+ },
541
+ "eval_loss": 0.469653844833374,
542
+ "eval_overall_accuracy": 0.8341081711913371,
543
+ "eval_overall_f1": 0.8557420137484835,
544
+ "eval_overall_precision": 0.8295766366130929,
545
+ "eval_overall_recall": 0.8836116910229646,
546
+ "eval_runtime": 7.3483,
547
+ "eval_samples_per_second": 1157.542,
548
+ "eval_steps_per_second": 36.199,
549
+ "step": 10000
550
+ },
551
+ {
552
+ "epoch": 2.08,
553
+ "learning_rate": 1.535339536725401e-05,
554
+ "loss": 0.488,
555
+ "step": 10500
556
+ },
557
+ {
558
+ "epoch": 2.18,
559
+ "learning_rate": 1.3703557051408963e-05,
560
+ "loss": 0.4913,
561
+ "step": 11000
562
+ },
563
+ {
564
+ "epoch": 2.18,
565
+ "eval_COMMENT": {
566
+ "f1": 0.6905655320289467,
567
+ "number": 6879,
568
+ "precision": 0.6405220633934121,
569
+ "recall": 0.7490914377089694
570
+ },
571
+ "eval_NAME": {
572
+ "f1": 0.8180196253345228,
573
+ "number": 8827,
574
+ "precision": 0.8053573388955978,
575
+ "recall": 0.8310864393338621
576
+ },
577
+ "eval_QTY": {
578
+ "f1": 0.9862671660424469,
579
+ "number": 7190,
580
+ "precision": 0.9836745987825124,
581
+ "recall": 0.9888734353268428
582
+ },
583
+ "eval_RANGE_END": {
584
+ "f1": 0.7395833333333335,
585
+ "number": 82,
586
+ "precision": 0.6454545454545455,
587
+ "recall": 0.8658536585365854
588
+ },
589
+ "eval_UNIT": {
590
+ "f1": 0.9573139868398851,
591
+ "number": 5762,
592
+ "precision": 0.9313854235062377,
593
+ "recall": 0.9847275251648733
594
+ },
595
+ "eval_loss": 0.46854740381240845,
596
+ "eval_overall_accuracy": 0.8354856607166772,
597
+ "eval_overall_f1": 0.8544265390061359,
598
+ "eval_overall_precision": 0.8286685848809835,
599
+ "eval_overall_recall": 0.8818371607515657,
600
+ "eval_runtime": 10.1454,
601
+ "eval_samples_per_second": 838.411,
602
+ "eval_steps_per_second": 26.219,
603
+ "step": 11000
604
+ },
605
+ {
606
+ "epoch": 2.28,
607
+ "learning_rate": 1.2053718735563915e-05,
608
+ "loss": 0.4817,
609
+ "step": 11500
610
+ },
611
+ {
612
+ "epoch": 2.38,
613
+ "learning_rate": 1.0403880419718868e-05,
614
+ "loss": 0.4769,
615
+ "step": 12000
616
+ },
617
+ {
618
+ "epoch": 2.38,
619
+ "eval_COMMENT": {
620
+ "f1": 0.6879323081055672,
621
+ "number": 6879,
622
+ "precision": 0.6392910634048926,
623
+ "recall": 0.7445849687454572
624
+ },
625
+ "eval_NAME": {
626
+ "f1": 0.8153271236544146,
627
+ "number": 8827,
628
+ "precision": 0.8030103274005713,
629
+ "recall": 0.8280276424606321
630
+ },
631
+ "eval_QTY": {
632
+ "f1": 0.9868704411253908,
633
+ "number": 7190,
634
+ "precision": 0.9858431644691187,
635
+ "recall": 0.9878998609179416
636
+ },
637
+ "eval_RANGE_END": {
638
+ "f1": 0.7628865979381443,
639
+ "number": 82,
640
+ "precision": 0.6607142857142857,
641
+ "recall": 0.9024390243902439
642
+ },
643
+ "eval_UNIT": {
644
+ "f1": 0.958024275118004,
645
+ "number": 5762,
646
+ "precision": 0.9313339888561127,
647
+ "recall": 0.9862894828184658
648
+ },
649
+ "eval_loss": 0.465949147939682,
650
+ "eval_overall_accuracy": 0.8352943427270466,
651
+ "eval_overall_f1": 0.8533733740488925,
652
+ "eval_overall_precision": 0.8283169030229588,
653
+ "eval_overall_recall": 0.8799930410577592,
654
+ "eval_runtime": 7.683,
655
+ "eval_samples_per_second": 1107.123,
656
+ "eval_steps_per_second": 34.622,
657
+ "step": 12000
658
+ },
659
+ {
660
+ "epoch": 2.47,
661
+ "learning_rate": 8.75404210387382e-06,
662
+ "loss": 0.4792,
663
+ "step": 12500
664
+ },
665
+ {
666
+ "epoch": 2.57,
667
+ "learning_rate": 7.104203788028774e-06,
668
+ "loss": 0.4752,
669
+ "step": 13000
670
+ },
671
+ {
672
+ "epoch": 2.57,
673
+ "eval_COMMENT": {
674
+ "f1": 0.6899657235029236,
675
+ "number": 6879,
676
+ "precision": 0.641625,
677
+ "recall": 0.7461840383776712
678
+ },
679
+ "eval_NAME": {
680
+ "f1": 0.8208305425318152,
681
+ "number": 8827,
682
+ "precision": 0.8089998899768952,
683
+ "recall": 0.833012348476266
684
+ },
685
+ "eval_QTY": {
686
+ "f1": 0.9868759113950422,
687
+ "number": 7190,
688
+ "precision": 0.9854389127721537,
689
+ "recall": 0.988317107093185
690
+ },
691
+ "eval_RANGE_END": {
692
+ "f1": 0.7419354838709676,
693
+ "number": 82,
694
+ "precision": 0.6634615384615384,
695
+ "recall": 0.8414634146341463
696
+ },
697
+ "eval_UNIT": {
698
+ "f1": 0.95803428185426,
699
+ "number": 5762,
700
+ "precision": 0.932905772076961,
701
+ "recall": 0.9845539743144741
702
+ },
703
+ "eval_loss": 0.46514269709587097,
704
+ "eval_overall_accuracy": 0.8359448238917906,
705
+ "eval_overall_f1": 0.8555170958210215,
706
+ "eval_overall_precision": 0.831031654912252,
707
+ "eval_overall_recall": 0.8814892136395268,
708
+ "eval_runtime": 12.3762,
709
+ "eval_samples_per_second": 687.286,
710
+ "eval_steps_per_second": 21.493,
711
+ "step": 13000
712
+ },
713
+ {
714
+ "epoch": 2.67,
715
+ "learning_rate": 5.4543654721837265e-06,
716
+ "loss": 0.471,
717
+ "step": 13500
718
+ },
719
+ {
720
+ "epoch": 2.77,
721
+ "learning_rate": 3.804527156338679e-06,
722
+ "loss": 0.4834,
723
+ "step": 14000
724
+ },
725
+ {
726
+ "epoch": 2.77,
727
+ "eval_COMMENT": {
728
+ "f1": 0.694272653939231,
729
+ "number": 6879,
730
+ "precision": 0.6457421533074903,
731
+ "recall": 0.7506905073411834
732
+ },
733
+ "eval_NAME": {
734
+ "f1": 0.8180143981248955,
735
+ "number": 8827,
736
+ "precision": 0.8060932688077431,
737
+ "recall": 0.830293417922284
738
+ },
739
+ "eval_QTY": {
740
+ "f1": 0.9868311616301636,
741
+ "number": 7190,
742
+ "precision": 0.9835589941972921,
743
+ "recall": 0.990125173852573
744
+ },
745
+ "eval_RANGE_END": {
746
+ "f1": 0.7437185929648242,
747
+ "number": 82,
748
+ "precision": 0.6324786324786325,
749
+ "recall": 0.9024390243902439
750
+ },
751
+ "eval_UNIT": {
752
+ "f1": 0.9579080556727119,
753
+ "number": 5762,
754
+ "precision": 0.9318890530116527,
755
+ "recall": 0.9854217285664699
756
+ },
757
+ "eval_loss": 0.46282991766929626,
758
+ "eval_overall_accuracy": 0.8365187778606823,
759
+ "eval_overall_f1": 0.8557788012213844,
760
+ "eval_overall_precision": 0.8305989455414743,
761
+ "eval_overall_recall": 0.8825330549756437,
762
+ "eval_runtime": 8.3554,
763
+ "eval_samples_per_second": 1018.028,
764
+ "eval_steps_per_second": 31.836,
765
+ "step": 14000
766
+ },
767
+ {
768
+ "epoch": 2.87,
769
+ "learning_rate": 2.154688840493632e-06,
770
+ "loss": 0.4731,
771
+ "step": 14500
772
+ },
773
+ {
774
+ "epoch": 2.97,
775
+ "learning_rate": 5.048505246485845e-07,
776
+ "loss": 0.4784,
777
+ "step": 15000
778
+ },
779
+ {
780
+ "epoch": 2.97,
781
+ "eval_COMMENT": {
782
+ "f1": 0.6956345998383185,
783
+ "number": 6879,
784
+ "precision": 0.6482109227871939,
785
+ "recall": 0.7505451373746184
786
+ },
787
+ "eval_NAME": {
788
+ "f1": 0.8189838079285315,
789
+ "number": 8827,
790
+ "precision": 0.8074424749532093,
791
+ "recall": 0.8308598617876969
792
+ },
793
+ "eval_QTY": {
794
+ "f1": 0.9866888519134775,
795
+ "number": 7190,
796
+ "precision": 0.9836881393419962,
797
+ "recall": 0.9897079276773296
798
+ },
799
+ "eval_RANGE_END": {
800
+ "f1": 0.7487179487179487,
801
+ "number": 82,
802
+ "precision": 0.6460176991150443,
803
+ "recall": 0.8902439024390244
804
+ },
805
+ "eval_UNIT": {
806
+ "f1": 0.958502024291498,
807
+ "number": 5762,
808
+ "precision": 0.9323925172300623,
809
+ "recall": 0.9861159319680667
810
+ },
811
+ "eval_loss": 0.46261611580848694,
812
+ "eval_overall_accuracy": 0.8369970728347587,
813
+ "eval_overall_f1": 0.856607405156258,
814
+ "eval_overall_precision": 0.8320377841188625,
815
+ "eval_overall_recall": 0.8826722338204593,
816
+ "eval_runtime": 11.364,
817
+ "eval_samples_per_second": 748.503,
818
+ "eval_steps_per_second": 23.407,
819
+ "step": 15000
820
+ },
821
+ {
822
+ "epoch": 3.0,
823
+ "step": 15153,
824
+ "total_flos": 465391972741860.0,
825
+ "train_loss": 0.5097090245898089,
826
+ "train_runtime": 609.9382,
827
+ "train_samples_per_second": 794.849,
828
+ "train_steps_per_second": 24.843
829
+ }
830
+ ],
831
+ "logging_steps": 500,
832
+ "max_steps": 15153,
833
+ "num_train_epochs": 3,
834
+ "save_steps": 500,
835
+ "total_flos": 465391972741860.0,
836
+ "trial_name": null,
837
+ "trial_params": null
838
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a4988f20a86429d6b4f2e2acff74708f521e655269e444f5f6e37d2746b3483e
3
+ size 4027
validation_results.json ADDED
@@ -0,0 +1,41 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 3.0,
3
+ "eval_COMMENT": {
4
+ "f1": 0.6955525606469003,
5
+ "number": 6879,
6
+ "precision": 0.6482853912825022,
7
+ "recall": 0.7502543974414886
8
+ },
9
+ "eval_NAME": {
10
+ "f1": 0.818689293290164,
11
+ "number": 8827,
12
+ "precision": 0.8069770001100474,
13
+ "recall": 0.8307465730146143
14
+ },
15
+ "eval_QTY": {
16
+ "f1": 0.9866888519134775,
17
+ "number": 7190,
18
+ "precision": 0.9836881393419962,
19
+ "recall": 0.9897079276773296
20
+ },
21
+ "eval_RANGE_END": {
22
+ "f1": 0.7551020408163265,
23
+ "number": 82,
24
+ "precision": 0.6491228070175439,
25
+ "recall": 0.9024390243902439
26
+ },
27
+ "eval_UNIT": {
28
+ "f1": 0.958502024291498,
29
+ "number": 5762,
30
+ "precision": 0.9323925172300623,
31
+ "recall": 0.9861159319680667
32
+ },
33
+ "eval_loss": 0.46256619691848755,
34
+ "eval_overall_accuracy": 0.8369588092368325,
35
+ "eval_overall_f1": 0.8565254094209015,
36
+ "eval_overall_precision": 0.8319448999672023,
37
+ "eval_overall_recall": 0.8826026443980515,
38
+ "eval_runtime": 9.5783,
39
+ "eval_samples_per_second": 888.052,
40
+ "eval_steps_per_second": 27.771
41
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff