nanalysenko commited on
Commit
afd9806
·
verified ·
1 Parent(s): 4b12bff

Upload 10 files

Browse files
README.md CHANGED
@@ -1,3 +1,376 @@
1
- ---
2
- license: mit
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: DeepPavlov/rubert-base-cased-sentence
3
+ datasets: []
4
+ language: []
5
+ library_name: sentence-transformers
6
+ pipeline_tag: sentence-similarity
7
+ tags:
8
+ - sentence-transformers
9
+ - sentence-similarity
10
+ - feature-extraction
11
+ - generated_from_trainer
12
+ - dataset_size:29127
13
+ - loss:MultipleNegativesRankingLoss
14
+ widget:
15
+ - source_sentence: 'Медицинское освидетельствование на состояние опьянения
16
+
17
+ (алкогольное, наркотическое и иное токсическое согласно приказу МЗ РФ № 933н от
18
+
19
+ 18.12.2015г.)'
20
+ sentences:
21
+ - Патолого-анатомическое исследование биопсийного (операционного) материала матки,
22
+ придатков, стенки кишки
23
+ - Медицинское освидетельствование на состояние опьянения (алкогольного, наркотического
24
+ или иного токсического)
25
+ - Определение содержания антител к эндомизию в крови
26
+ - source_sentence: УЗИ придаточных (верхнечелюстных) пазух
27
+ sentences:
28
+ - Рентгенография позвоночника, вертикальная
29
+ - Прием (осмотр, консультация) врача-офтальмолога первичный
30
+ - Ультразвуковое исследование околоносовых пазух
31
+ - source_sentence: Прием (осмотр, консультация) врача-челюстно-лицевого хирурга повторный
32
+ sentences:
33
+ - Магнитно-резонансная томография шеи
34
+ - Тимпанометрия
35
+ - Прием (осмотр, консультация) врача-челюстно-лицевого хирурга повторный
36
+ - source_sentence: (200) АЛТ (аланинаминотрансфераза)
37
+ sentences:
38
+ - Определение активности аланинаминотрансферазы в крови
39
+ - Рентгенография грудного и поясничного отдела позвоночника
40
+ - Анализ спектра органических кислот мочи методом газовой хроматографии с масс-спектрометрией
41
+ - source_sentence: Витамин 25(OH)D2 и 25(OH)D3, раздельное определение (ВЭЖХ - МС/МС)
42
+ sentences:
43
+ - Исследование уровня 25-OH витамина Д в крови
44
+ - Определение содержания антител к париетальным клеткам желудка
45
+ - Прием (осмотр, консультация) врача-детского хирурга повторный
46
+ ---
47
+
48
+ # SentenceTransformer based on DeepPavlov/rubert-base-cased-sentence
49
+
50
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [DeepPavlov/rubert-base-cased-sentence](https://huggingface.co/DeepPavlov/rubert-base-cased-sentence). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
51
+
52
+ ## Model Details
53
+
54
+ ### Model Description
55
+ - **Model Type:** Sentence Transformer
56
+ - **Base model:** [DeepPavlov/rubert-base-cased-sentence](https://huggingface.co/DeepPavlov/rubert-base-cased-sentence) <!-- at revision 78b5122d6365337dd4114281b0d08cd1edbb3bc8 -->
57
+ - **Maximum Sequence Length:** 512 tokens
58
+ - **Output Dimensionality:** 768 tokens
59
+ - **Similarity Function:** Cosine Similarity
60
+ <!-- - **Training Dataset:** Unknown -->
61
+ <!-- - **Language:** Unknown -->
62
+ <!-- - **License:** Unknown -->
63
+
64
+ ### Model Sources
65
+
66
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
67
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
68
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
69
+
70
+ ### Full Model Architecture
71
+
72
+ ```
73
+ SentenceTransformer(
74
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
75
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
76
+ )
77
+ ```
78
+
79
+ ## Usage
80
+
81
+ ### Direct Usage (Sentence Transformers)
82
+
83
+ First install the Sentence Transformers library:
84
+
85
+ ```bash
86
+ pip install -U sentence-transformers
87
+ ```
88
+
89
+ Then you can load this model and run inference.
90
+ ```python
91
+ from sentence_transformers import SentenceTransformer
92
+
93
+ # Download from the 🤗 Hub
94
+ model = SentenceTransformer("sentence_transformers_model_id")
95
+ # Run inference
96
+ sentences = [
97
+ 'Витамин 25(OH)D2 и 25(OH)D3, раздельное определение (ВЭЖХ - МС/МС)',
98
+ 'Исследование уровня 25-OH витамина Д в крови',
99
+ 'Определение содержания антител к париетальным клеткам желудка',
100
+ ]
101
+ embeddings = model.encode(sentences)
102
+ print(embeddings.shape)
103
+ # [3, 768]
104
+
105
+ # Get the similarity scores for the embeddings
106
+ similarities = model.similarity(embeddings, embeddings)
107
+ print(similarities.shape)
108
+ # [3, 3]
109
+ ```
110
+
111
+ <!--
112
+ ### Direct Usage (Transformers)
113
+
114
+ <details><summary>Click to see the direct usage in Transformers</summary>
115
+
116
+ </details>
117
+ -->
118
+
119
+ <!--
120
+ ### Downstream Usage (Sentence Transformers)
121
+
122
+ You can finetune this model on your own dataset.
123
+
124
+ <details><summary>Click to expand</summary>
125
+
126
+ </details>
127
+ -->
128
+
129
+ <!--
130
+ ### Out-of-Scope Use
131
+
132
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
133
+ -->
134
+
135
+ <!--
136
+ ## Bias, Risks and Limitations
137
+
138
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
139
+ -->
140
+
141
+ <!--
142
+ ### Recommendations
143
+
144
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
145
+ -->
146
+
147
+ ## Training Details
148
+
149
+ ### Training Dataset
150
+
151
+ #### Unnamed Dataset
152
+
153
+
154
+ * Size: 29,127 training samples
155
+ * Columns: <code>sentence_0</code> and <code>sentence_1</code>
156
+ * Approximate statistics based on the first 1000 samples:
157
+ | | sentence_0 | sentence_1 |
158
+ |:--------|:-----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
159
+ | type | string | string |
160
+ | details | <ul><li>min: 4 tokens</li><li>mean: 19.98 tokens</li><li>max: 110 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 17.0 tokens</li><li>max: 60 tokens</li></ul> |
161
+ * Samples:
162
+ | sentence_0 | sentence_1 |
163
+ |:-------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
164
+ | <code>Ультразвуковое исследование органов малого таза <br>(комплексное)</code> | <code>Ультразвуковое исследование органов малого таза</code> |
165
+ | <code>МРТ головного мозга (исследование структуры головного мозга)</code> | <code>Магнитно-резонансная томография головного мозга с контрастированием</code> |
166
+ | <code>Антитела к лямблиям (Lamblia intestinalis), суммарные</code> | <code>Определение антител классов A, M, G (IgM, IgA, IgG) к лямблиям в крови</code> |
167
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
168
+ ```json
169
+ {
170
+ "scale": 20.0,
171
+ "similarity_fct": "cos_sim"
172
+ }
173
+ ```
174
+
175
+ ### Training Hyperparameters
176
+ #### Non-Default Hyperparameters
177
+
178
+ - `per_device_train_batch_size`: 32
179
+ - `per_device_eval_batch_size`: 32
180
+ - `num_train_epochs`: 11
181
+ - `multi_dataset_batch_sampler`: round_robin
182
+
183
+ #### All Hyperparameters
184
+ <details><summary>Click to expand</summary>
185
+
186
+ - `overwrite_output_dir`: False
187
+ - `do_predict`: False
188
+ - `eval_strategy`: no
189
+ - `prediction_loss_only`: True
190
+ - `per_device_train_batch_size`: 32
191
+ - `per_device_eval_batch_size`: 32
192
+ - `per_gpu_train_batch_size`: None
193
+ - `per_gpu_eval_batch_size`: None
194
+ - `gradient_accumulation_steps`: 1
195
+ - `eval_accumulation_steps`: None
196
+ - `learning_rate`: 5e-05
197
+ - `weight_decay`: 0.0
198
+ - `adam_beta1`: 0.9
199
+ - `adam_beta2`: 0.999
200
+ - `adam_epsilon`: 1e-08
201
+ - `max_grad_norm`: 1
202
+ - `num_train_epochs`: 11
203
+ - `max_steps`: -1
204
+ - `lr_scheduler_type`: linear
205
+ - `lr_scheduler_kwargs`: {}
206
+ - `warmup_ratio`: 0.0
207
+ - `warmup_steps`: 0
208
+ - `log_level`: passive
209
+ - `log_level_replica`: warning
210
+ - `log_on_each_node`: True
211
+ - `logging_nan_inf_filter`: True
212
+ - `save_safetensors`: True
213
+ - `save_on_each_node`: False
214
+ - `save_only_model`: False
215
+ - `restore_callback_states_from_checkpoint`: False
216
+ - `no_cuda`: False
217
+ - `use_cpu`: False
218
+ - `use_mps_device`: False
219
+ - `seed`: 42
220
+ - `data_seed`: None
221
+ - `jit_mode_eval`: False
222
+ - `use_ipex`: False
223
+ - `bf16`: False
224
+ - `fp16`: False
225
+ - `fp16_opt_level`: O1
226
+ - `half_precision_backend`: auto
227
+ - `bf16_full_eval`: False
228
+ - `fp16_full_eval`: False
229
+ - `tf32`: None
230
+ - `local_rank`: 0
231
+ - `ddp_backend`: None
232
+ - `tpu_num_cores`: None
233
+ - `tpu_metrics_debug`: False
234
+ - `debug`: []
235
+ - `dataloader_drop_last`: False
236
+ - `dataloader_num_workers`: 0
237
+ - `dataloader_prefetch_factor`: None
238
+ - `past_index`: -1
239
+ - `disable_tqdm`: False
240
+ - `remove_unused_columns`: True
241
+ - `label_names`: None
242
+ - `load_best_model_at_end`: False
243
+ - `ignore_data_skip`: False
244
+ - `fsdp`: []
245
+ - `fsdp_min_num_params`: 0
246
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
247
+ - `fsdp_transformer_layer_cls_to_wrap`: None
248
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
249
+ - `deepspeed`: None
250
+ - `label_smoothing_factor`: 0.0
251
+ - `optim`: adamw_torch
252
+ - `optim_args`: None
253
+ - `adafactor`: False
254
+ - `group_by_length`: False
255
+ - `length_column_name`: length
256
+ - `ddp_find_unused_parameters`: None
257
+ - `ddp_bucket_cap_mb`: None
258
+ - `ddp_broadcast_buffers`: False
259
+ - `dataloader_pin_memory`: True
260
+ - `dataloader_persistent_workers`: False
261
+ - `skip_memory_metrics`: True
262
+ - `use_legacy_prediction_loop`: False
263
+ - `push_to_hub`: False
264
+ - `resume_from_checkpoint`: None
265
+ - `hub_model_id`: None
266
+ - `hub_strategy`: every_save
267
+ - `hub_private_repo`: False
268
+ - `hub_always_push`: False
269
+ - `gradient_checkpointing`: False
270
+ - `gradient_checkpointing_kwargs`: None
271
+ - `include_inputs_for_metrics`: False
272
+ - `eval_do_concat_batches`: True
273
+ - `fp16_backend`: auto
274
+ - `push_to_hub_model_id`: None
275
+ - `push_to_hub_organization`: None
276
+ - `mp_parameters`:
277
+ - `auto_find_batch_size`: False
278
+ - `full_determinism`: False
279
+ - `torchdynamo`: None
280
+ - `ray_scope`: last
281
+ - `ddp_timeout`: 1800
282
+ - `torch_compile`: False
283
+ - `torch_compile_backend`: None
284
+ - `torch_compile_mode`: None
285
+ - `dispatch_batches`: None
286
+ - `split_batches`: None
287
+ - `include_tokens_per_second`: False
288
+ - `include_num_input_tokens_seen`: False
289
+ - `neftune_noise_alpha`: None
290
+ - `optim_target_modules`: None
291
+ - `batch_eval_metrics`: False
292
+ - `batch_sampler`: batch_sampler
293
+ - `multi_dataset_batch_sampler`: round_robin
294
+
295
+ </details>
296
+
297
+ ### Training Logs
298
+ | Epoch | Step | Training Loss |
299
+ |:-------:|:-----:|:-------------:|
300
+ | 0.5488 | 500 | 0.8526 |
301
+ | 1.0977 | 1000 | 0.3415 |
302
+ | 1.6465 | 1500 | 0.2691 |
303
+ | 2.1954 | 2000 | 0.218 |
304
+ | 2.7442 | 2500 | 0.188 |
305
+ | 3.2931 | 3000 | 0.1725 |
306
+ | 3.8419 | 3500 | 0.1533 |
307
+ | 4.3908 | 4000 | 0.1508 |
308
+ | 4.9396 | 4500 | 0.1391 |
309
+ | 5.4885 | 5000 | 0.1311 |
310
+ | 6.0373 | 5500 | 0.1284 |
311
+ | 6.5862 | 6000 | 0.122 |
312
+ | 7.1350 | 6500 | 0.1163 |
313
+ | 7.6839 | 7000 | 0.1102 |
314
+ | 8.2327 | 7500 | 0.1068 |
315
+ | 8.7816 | 8000 | 0.1046 |
316
+ | 9.3304 | 8500 | 0.1018 |
317
+ | 9.8793 | 9000 | 0.0987 |
318
+ | 10.4281 | 9500 | 0.0983 |
319
+ | 10.9769 | 10000 | 0.0971 |
320
+
321
+
322
+ ### Framework Versions
323
+ - Python: 3.10.12
324
+ - Sentence Transformers: 3.0.1
325
+ - Transformers: 4.41.2
326
+ - PyTorch: 2.3.0+cu121
327
+ - Accelerate: 0.32.1
328
+ - Datasets: 2.20.0
329
+ - Tokenizers: 0.19.1
330
+
331
+ ## Citation
332
+
333
+ ### BibTeX
334
+
335
+ #### Sentence Transformers
336
+ ```bibtex
337
+ @inproceedings{reimers-2019-sentence-bert,
338
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
339
+ author = "Reimers, Nils and Gurevych, Iryna",
340
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
341
+ month = "11",
342
+ year = "2019",
343
+ publisher = "Association for Computational Linguistics",
344
+ url = "https://arxiv.org/abs/1908.10084",
345
+ }
346
+ ```
347
+
348
+ #### MultipleNegativesRankingLoss
349
+ ```bibtex
350
+ @misc{henderson2017efficient,
351
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
352
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
353
+ year={2017},
354
+ eprint={1705.00652},
355
+ archivePrefix={arXiv},
356
+ primaryClass={cs.CL}
357
+ }
358
+ ```
359
+
360
+ <!--
361
+ ## Glossary
362
+
363
+ *Clearly define terms in order to be accessible across audiences.*
364
+ -->
365
+
366
+ <!--
367
+ ## Model Card Authors
368
+
369
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
370
+ -->
371
+
372
+ <!--
373
+ ## Model Card Contact
374
+
375
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
376
+ -->
config.json ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "DeepPavlov/rubert-base-cased-sentence",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "directionality": "bidi",
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 3072,
14
+ "layer_norm_eps": 1e-12,
15
+ "max_position_embeddings": 512,
16
+ "model_type": "bert",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 12,
19
+ "output_past": true,
20
+ "pad_token_id": 0,
21
+ "pooler_fc_size": 768,
22
+ "pooler_num_attention_heads": 12,
23
+ "pooler_num_fc_layers": 3,
24
+ "pooler_size_per_head": 128,
25
+ "pooler_type": "first_token_transform",
26
+ "position_embedding_type": "absolute",
27
+ "torch_dtype": "float32",
28
+ "transformers_version": "4.41.2",
29
+ "type_vocab_size": 2,
30
+ "use_cache": true,
31
+ "vocab_size": 119547
32
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.0.1",
4
+ "transformers": "4.41.2",
5
+ "pytorch": "2.3.0+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:772175840f605afc32de5fde9479e5efa69a03754f710e63a6922b3b3ce5011a
3
+ size 711436136
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": "[CLS]",
3
+ "mask_token": "[MASK]",
4
+ "pad_token": "[PAD]",
5
+ "sep_token": "[SEP]",
6
+ "unk_token": "[UNK]"
7
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": false,
48
+ "mask_token": "[MASK]",
49
+ "model_max_length": 1000000000000000019884624838656,
50
+ "never_split": null,
51
+ "pad_token": "[PAD]",
52
+ "sep_token": "[SEP]",
53
+ "strip_accents": null,
54
+ "tokenize_chinese_chars": true,
55
+ "tokenizer_class": "BertTokenizer",
56
+ "unk_token": "[UNK]"
57
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff