--- license: apache-2.0 metrics: - accuracy pipeline_tag: image-classification tags: - MobileNetV2 - accident-detection library_name: transformers --- An image classification model for detecting car crashes from traffic cams. An easier to run version of Crashly is currently in development. To run this model, use the following code snippet. ``` import numpy as np from PIL import Image import tensorflow as tf # Load TFLite model and allocate tensors. interpreter = tf.lite.Interpreter(model_path="{model_name}.tflite") interpreter.allocate_tensors() # Get input and output tensors. input_details = interpreter.get_input_details() output_details = interpreter.get_output_details() input_shape = input_details[0]['shape'] # Load and preprocess image def load_image(image_path): img = Image.open(image_path).convert('RGB') img = img.resize([input_shape[1], input_shape[2]]) img = np.asarray(img, dtype='float32') / 255 # Return a scaled array between -1 and 1 return img * 2 - 1 if __name__ == "__main__": input_data = load_image("/tmp/your-image-here.jpg") interpreter.set_tensor(input_details[0]['index'], input_data) interpreter.invoke() # The function `get_tensor()` returns a copy of the tensor data. # Use `tensor()` in order to get a pointer to the tensor. output_data = interpreter.get_tensor(output_details[0]['index']) print(output_data) ```