--- license: mit base_model: facebook/bart-large-cnn tags: - generated_from_trainer datasets: - xsum metrics: - rouge model-index: - name: theus_concepttagger results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: xsum type: xsum config: default split: validation args: default metrics: - name: Rouge1 type: rouge value: 34.8663 --- # theus_concepttagger This model is a fine-tuned version of [facebook/bart-large-cnn](https://huggingface.co/facebook/bart-large-cnn) on the xsum dataset. It achieves the following results on the evaluation set: - Loss: 1.6249 - Rouge1: 34.8663 - Rouge2: 15.1526 - Rougel: 26.1224 - Rougelsum: 26.5164 - Gen Len: 62.4475 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | 1.4096 | 1.0 | 12753 | 1.6249 | 34.8663 | 15.1526 | 26.1224 | 26.5164 | 62.4475 | ### Framework versions - Transformers 4.33.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3