import json import os from pathlib import Path from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple, Union import torch import sentencepiece from transformers.tokenization_utils import PreTrainedTokenizer from transformers.utils import logging logger = logging.get_logger(__name__) SPIECE_UNDERLINE = "▁" VOCAB_FILES_NAMES = { "vocab_file": "vocab.json", "spm_file": "mitre_spm.model", "tokenizer_config_file": "tokenizer_config.json", } # follow iso639-2 FAIRSEQ_LANGUAGE_CODES = ["en", "de", "nl", "sv", "da", "af", "fr", "es", "it", "pt", "ro", "ru", "cs", "pl", "bg", "uk", "id", "jv", "ms", "tl", "ja", "zh", "ko", "vi"] # This is the tokenizer of MITRE. # This code is modified from transformers.models.m2m_100.tokenization_m2m_100.M2M100Tokenizer class MitreTokenizer(PreTrainedTokenizer): vocab_files_names = VOCAB_FILES_NAMES model_input_names = ["input_ids", "attention_mask"] prefix_tokens: List[int] = [] suffix_tokens: List[int] = [] def __init__( self, vocab_file, spm_file, bos_token="", eos_token="", sep_token="", pad_token="", unk_token="", sp_model_kwargs: Optional[Dict[str, Any]] = None, **kwargs, ) -> None: self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs fairseq_language_code = FAIRSEQ_LANGUAGE_CODES self.lang_code_to_token = {lang_code: f"__{lang_code}__" for lang_code in fairseq_language_code} additional_special_tokens = kwargs.pop("additional_special_tokens", []) for lang_code in fairseq_language_code: token = self.get_lang_token(lang_code) if token not in additional_special_tokens: additional_special_tokens.append(token) self.vocab_file = vocab_file self.encoder = load_json(vocab_file) self.decoder = {v: k for k, v in self.encoder.items()} self.spm_file = spm_file self.sp_model = load_spm(spm_file, self.sp_model_kwargs) self.encoder_size = len(self.encoder) self.lang_token_to_id = { self.get_lang_token(lang_code): self.encoder_size + i for i, lang_code in enumerate(fairseq_language_code) } self.lang_code_to_id = {lang_code: self.encoder_size + i for i, lang_code in enumerate(fairseq_language_code)} self.id_to_lang_token = {v: k for k, v in self.lang_token_to_id.items()} # default self.tgt_lang = "en" super().__init__( bos_token=bos_token, eos_token=eos_token, sep_token=sep_token, unk_token=unk_token, pad_token=pad_token, sp_model_kwargs=self.sp_model_kwargs, additional_special_tokens=additional_special_tokens, **kwargs, ) @property def vocab_size(self) -> int: return len(self.encoder) def get_vocab(self) -> Dict: vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def _tokenize(self, text: str) -> List[str]: return self.sp_model.encode(text, out_type=str) def _convert_token_to_id(self, token): if token in self.lang_token_to_id: return self.lang_token_to_id[token] return self.encoder.get(token, self.encoder[self.unk_token]) def _convert_id_to_token(self, index: int) -> str: """Converts an index (integer) in a token (str) using the decoder.""" if index in self.id_to_lang_token: return self.id_to_lang_token[index] return self.decoder.get(index, self.unk_token) def convert_tokens_to_string(self, tokens): """Converts a sequence of tokens (string) in a single string.""" current_sub_tokens = [] out_string = "" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(current_sub_tokens) + token current_sub_tokens = [] else: current_sub_tokens.append(token) out_string += self.sp_model.decode(current_sub_tokens) return out_string.strip() def __getstate__(self) -> Dict: state = self.__dict__.copy() state["sp_model"] = None return state def __setstate__(self, d: Dict) -> None: self.__dict__ = d # for backward compatibility if not hasattr(self, "sp_model_kwargs"): self.sp_model_kwargs = {} self.sp_model = load_spm(self.spm_file, self.sp_model_kwargs) def build_inputs_with_special_tokens( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: if token_ids_1 is None: return self.prefix_tokens + token_ids_0 + self.suffix_tokens return self.prefix_tokens + token_ids_0 + token_ids_1 + self.suffix_tokens def _switch_to_input_mode(self): self.set_tgt_lang_special_tokens(self.tgt_lang) def _switch_to_target_mode(self): self.clear_lang_special_tokens() def clear_lang_special_tokens(self) -> None: self.prefix_tokens = [] self.suffix_tokens = [self.eos_token_id] def set_tgt_lang_special_tokens(self, tgt_lang: str) -> None: """Reset the special tokens to the target language setting. No prefix and suffix=[eos, tgt_lang_code].""" lang_token = self.get_lang_token(tgt_lang) self.cur_lang_id = self.lang_token_to_id[lang_token] self.prefix_tokens = [self.cur_lang_id] self.suffix_tokens = [self.eos_token_id] def get_lang_token(self, lang: str) -> str: return self.lang_code_to_token[lang] def get_lang_id(self, lang: str) -> int: lang_token = self.get_lang_token(lang) return self.lang_token_to_id[lang_token] def encode_source_tokens_to_input_ids(self, inputs, target_language="en"): """pads + target language id + source tokens id + eos id""" self.tgt_lang = target_language input_ids = self.__call__(inputs, add_special_tokens=True, padding_side='left', padding=True, return_attention_mask=False, return_tensors="pt") return input_ids["input_ids"] def encode_source_tokens_to_input_ids_with_different_tags(self, inputs_text, target_languages_list: list): """ 'encode_source_tokens_to_input_ids' only supports a language tag, but sevenral in a batch could have different language tags. """ self.tgt_lang = "en" input_ids = self.__call__(inputs_text, add_special_tokens=True, padding_side='left', padding=True, return_attention_mask=False, return_tensors="pt")["input_ids"] _, max_indices = torch.max(input_ids, dim=1) input_ids[torch.arange(max_indices.shape[0]), max_indices] = torch.LongTensor([self.lang_token_to_id[self.get_lang_token(lang_code)] for lang_code in target_languages_list]) return input_ids def encode_target_tokens_to_labels(self, inputs_text): """target tokens id + eos id + pads""" input_ids = self.__call__(text_target=inputs_text, add_special_tokens=True, padding_side='right', padding=True, return_attention_mask=False, return_tensors="pt") return input_ids["input_ids"] def encode_target_tokens_to_input_ids(self, inputs_text): """eos id + target tokens id + pads, namely, left shifted""" input_ids = self.__call__(text_target=inputs_text, add_special_tokens=False, padding_side='right', padding=True, return_attention_mask=False, return_tensors="pt") labels_without_eos = input_ids["input_ids"] return torch.cat((torch.full((labels_without_eos.size(0), 1), self.eos_token_id), labels_without_eos), dim=1) def load_spm(path: str, sp_model_kwargs: Dict[str, Any]) -> sentencepiece.SentencePieceProcessor: spm = sentencepiece.SentencePieceProcessor(**sp_model_kwargs) spm.Load(str(path)) return spm def load_json(path: str) -> Union[Dict, List]: with open(path, "r") as f: return json.load(f) def save_json(data, path: str) -> None: with open(path, "w") as f: json.dump(data, f, indent=2) MitreTokenizer.register_for_auto_class("AutoTokenizer")