File size: 46,039 Bytes
9685c83
 
 
 
 
 
 
9be44fc
9685c83
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1c61cca
 
 
 
 
9685c83
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
74025f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9685c83
 
 
 
 
74025f2
 
 
 
 
 
 
 
 
 
 
 
 
9685c83
 
 
74025f2
 
 
9685c83
74025f2
9685c83
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1d88f72
 
9685c83
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
74025f2
9685c83
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
74025f2
 
 
9685c83
74025f2
 
 
 
 
 
 
 
 
9685c83
74025f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9685c83
74025f2
 
 
9685c83
 
 
 
 
 
317d82a
9685c83
 
 
317d82a
9685c83
 
 
 
 
74025f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9685c83
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
74025f2
 
 
 
 
 
 
 
 
9685c83
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
74025f2
 
 
 
 
 
 
 
 
 
 
 
9685c83
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
74025f2
9685c83
 
 
 
 
 
 
 
 
 
 
 
 
 
 
74025f2
9685c83
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
74025f2
9685c83
 
 
 
 
 
74025f2
9685c83
 
 
74025f2
9685c83
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
317d82a
1d88f72
317d82a
9685c83
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1c61cca
 
1d88f72
 
1c61cca
 
 
1d88f72
1c61cca
 
 
 
 
1d88f72
1c61cca
 
 
 
 
 
1d88f72
1c61cca
 
 
 
 
 
9685c83
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
74025f2
 
1d88f72
 
 
9685c83
1d88f72
 
9685c83
 
 
 
 
1d88f72
9685c83
 
 
 
74025f2
317d82a
 
 
74025f2
 
9685c83
 
1d88f72
74025f2
 
 
 
 
 
 
 
9685c83
 
 
 
 
 
1d88f72
9685c83
1d88f72
9685c83
 
 
 
 
1d88f72
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9685c83
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1d88f72
9685c83
 
 
 
 
 
 
 
 
 
 
 
 
1d88f72
 
 
 
 
 
 
 
 
 
9685c83
1d88f72
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9685c83
1d88f72
 
 
 
 
9685c83
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5805e00
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
# coding=utf-8

import math
from typing import List, Optional, Tuple, Union, Dict, Any

import torch
from torch import nn
from .configuration_mitre import MitreConfig
from transformers.utils import logging

from transformers.generation import GenerationMixin
from transformers.modeling_utils import PreTrainedModel
from transformers.activations import ACT2FN
from transformers.modeling_outputs import (
    BaseModelOutputWithPastAndCrossAttentions,
    Seq2SeqLMOutput,
    Seq2SeqModelOutput,
)
from transformers.generation.configuration_utils import GenerationConfig
from transformers.generation.beam_search import BeamSearchScorer
from transformers.generation.logits_process import LogitsProcessorList
from transformers.generation.stopping_criteria import StoppingCriteriaList

logger = logging.get_logger(__name__)

def create_position_ids_from_input_ids(input_ids, padding_idx, past_key_values_length=0):
    """
    Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding symbols
    are ignored. This is modified from fairseq's `utils.make_positions`.
    """
    mask = input_ids.ne(padding_idx).int()
    incremental_indices = (torch.cumsum(mask, dim=1).type_as(mask) + past_key_values_length) * mask
    return incremental_indices.long() + padding_idx


# Modified from transformers.models.m2m_100.modeling_m2m_100.M2M100Attention
# and transformers.models.m2m_100.modeling_m2m_100.M2M100SdpaAttention
class MitreSdpaAttention(nn.Module):

    def __init__(
        self,
        embed_dim: int,
        num_heads: int,
        dropout: float = 0.0,
        bias: bool = True,
        config: Optional[MitreConfig] = None,
    ):
        super().__init__()
        self.embed_dim = embed_dim
        self.num_heads = num_heads
        self.dropout = dropout
        self.head_dim = embed_dim // num_heads
        self.config = config

        if (self.head_dim * num_heads) != self.embed_dim:
            raise ValueError(
                f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}"
                f" and `num_heads`: {num_heads})."
            )
        self.scaling = self.head_dim**-0.5

        self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
        self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
        self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
        self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias)

    def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
        return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()

    def forward(
        self,
        hidden_states: torch.Tensor,
        past_key_value: Optional[Tuple[torch.Tensor]] = None,
        attention_mask: Optional[torch.Tensor] = None,
    ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
        """
        1. MitreModel uses MitreSdpaAttention, which is modified from M2M100SdpaAttention.
        Notably, neither of them supports 'output_attentions=True' or 'layer_head_mask is not None',
        meaning that attn_weights are not included in the output.
        Improving this feature is currently a low priority, and we leave this functionality for users to customize.
        2.We plan to enhance this code with Flash Attention v2 in the future.
        """
        bsz, tgt_len, _ = hidden_states.size()

        # get query proj
        query_states = self.q_proj(hidden_states)
        if past_key_value is not None:
            # reuse k, v, self_attention
            key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
            value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
            key_states = torch.cat([past_key_value[0], key_states], dim=2)
            value_states = torch.cat([past_key_value[1], value_states], dim=2)
        else:
            # self_attention
            key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
            value_states = self._shape(self.v_proj(hidden_states), -1, bsz)

        past_key_value = (key_states, value_states)

        query_states = self._shape(query_states, tgt_len, bsz)

        attn_output = torch.nn.functional.scaled_dot_product_attention(
            query_states,
            key_states,
            value_states,
            attn_mask=attention_mask,
            dropout_p=self.dropout if self.training else 0.0,
            is_causal=False,
        )

        if attn_output.size() != (bsz, self.num_heads, tgt_len, self.head_dim):
            raise ValueError(
                f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is"
                f" {attn_output.size()}"
            )

        attn_output = attn_output.transpose(1, 2)

        # Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be
        # partitioned across GPUs when using tensor-parallelism.
        attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim)

        attn_output = self.out_proj(attn_output)

        return attn_output, None, past_key_value


# Modified from transformers.models.m2m_100.modeling_m2m100.M2M100DecoderLayer
class MitreDecoderLayer(nn.Module):
    def __init__(self, config: MitreConfig):
        super().__init__()
        self.embed_dim = config.d_model

        self.self_attn = MitreSdpaAttention(
            embed_dim=self.embed_dim,
            num_heads=config.decoder_attention_heads,
            dropout=config.attention_dropout,
            config=config,
        )
        self.dropout = config.dropout
        self.activation_fn = ACT2FN[config.activation_function]
        self.activation_dropout = config.activation_dropout

        self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim)
        self.fc1 = nn.Linear(self.embed_dim, config.decoder_ffn_dim)
        self.fc2 = nn.Linear(config.decoder_ffn_dim, self.embed_dim)
        self.final_layer_norm = nn.LayerNorm(self.embed_dim)

    def forward(
        self,
        hidden_states: torch.Tensor,
        attention_mask: Optional[torch.Tensor] = None,
        past_key_value: Optional[Tuple[torch.Tensor]] = None,
        use_cache: Optional[bool] = True,
    ) -> torch.Tensor:
        """
        Args:
            hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
            attention_mask (`torch.FloatTensor`): attention mask of size
                `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
            past_key_value (`Tuple(torch.FloatTensor)`): cached past key and value projection states
        """
        residual = hidden_states
        hidden_states = self.self_attn_layer_norm(hidden_states)

        # Self Attention
        # decoder uni-directional self-attention cached key/values tuple is at positions 1,2
        self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
        # add present self-attn cache to positions 1,2 of present_key_value tuple
        hidden_states, _, present_key_value = self.self_attn(
            hidden_states=hidden_states,
            past_key_value=self_attn_past_key_value,
            attention_mask=attention_mask,
        )
        hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
        hidden_states = residual + hidden_states

        # Fully Connected
        residual = hidden_states
        hidden_states = self.final_layer_norm(hidden_states)
        hidden_states = self.activation_fn(self.fc1(hidden_states))
        hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training)
        hidden_states = self.fc2(hidden_states)
        hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
        hidden_states = residual + hidden_states

        outputs = (hidden_states,)

        if use_cache:
            outputs += (present_key_value,)

        return outputs


class MitrePreTrainedModel(PreTrainedModel):
    config_class = MitreConfig
    base_model_prefix = "model"
    supports_gradient_checkpointing = True
    _no_split_modules = ["MitreDecoderLayer"]
    # we plan to implement codes for falsh attention v2
    _supports_flash_attn_2 = False
    _supports_sdpa = True

    def _init_weights(self, module):
        std = self.config.init_std
        if isinstance(module, nn.Linear):
            module.weight.data.normal_(mean=0.0, std=std)
            if module.bias is not None:
                module.bias.data.zero_()
        elif isinstance(module, nn.Embedding):
            module.weight.data.normal_(mean=0.0, std=std)
            if module.padding_idx is not None:
                module.weight.data[module.padding_idx].zero_()


class MitreDecoder(MitrePreTrainedModel):
    """
    Transformer decoder consisting of *config.decoder_layers* layers. Each layer is a [`MitreDecoderLayer`]

    Args:
        config: MitreConfig
        embed_tokens (nn.Embedding): output embedding
    """

    def __init__(self, config: MitreConfig):
        super().__init__(config)
        self.dropout = config.dropout
        self.padding_idx = config.pad_token_id
        self.max_target_positions = config.max_position_embeddings
        embed_scale = math.sqrt(config.d_model) if config.scale_embedding else 1.0

        self.embed_tokens = MitreScaledWordEmbedding(
            config.vocab_size, config.d_model, self.padding_idx, embed_scale=embed_scale
        )

        self.src_embed_positions = MitreSinusoidalPositionalEmbedding(
            config.max_position_embeddings,
            config.d_model,
            self.padding_idx,
        )
        self.register_embed_positions = MitreSinusoidalPositionalEmbedding(
            config.max_position_embeddings,
            config.d_model,
            self.padding_idx,
        )
        self.tgt_embed_positions = MitreSinusoidalPositionalEmbedding(
            config.max_position_embeddings,
            config.d_model,
            self.padding_idx,
        )
        self.layers = nn.ModuleList([MitreDecoderLayer(config) for _ in range(config.decoder_layers)])
        if config._attn_implementation != "sdpa":
            raise NotImplementedError("Other attention mechanism are not implemented yet.")

        # TODO implement flash atten v2 for MITRE
        # self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2"
        self._use_sdpa = config._attn_implementation == "sdpa"
        self.layer_norm = nn.LayerNorm(config.d_model)

        self.gradient_checkpointing = False
        self._future_mask = torch.empty(0)
        # Initialize weights and apply final processing
        self.post_init()
    
    def create_registers(self, input_ids):
        '''
            create registers by duplicating the language tag respective to each sentence.
            length(registers) = length(real_tokens) = length(tokens) - length(pads)
        '''
        register_nums = (~input_ids.eq(self.padding_idx)).sum(dim=1)
        max_register_nums = register_nums.max().item()
        total_token_nums = input_ids.size(1) + max_register_nums
        batch_size = input_ids.size(0)
        registers = input_ids[range(batch_size), torch.argmax(input_ids, dim=-1)].unsqueeze(1).repeat(1, max_register_nums)
        return registers, register_nums, total_token_nums
    
    def get_token_indices(self, input_ids, total_token_nums, register_nums):
        '''
            return a token_indices for selecting source tokens from expanded_src_tokens
        '''
        token_indices = torch.arange(total_token_nums).expand(input_ids.size(0), -1).to(input_ids.device)
        token_indices = token_indices + register_nums.unsqueeze(1)
        return token_indices
    
    def get_batch_indices(self, input_ids, token_indices):
        '''
            return a batch_indices for selecting source tokens from expanded_src_tokens
        '''
        batch_indices = torch.arange(input_ids.shape[0]).unsqueeze(1).expand(-1, token_indices.size(1)).contiguous()
        return batch_indices

    def combine_src_and_registers(self, input_ids, registers):
        '''
            return a expanded_src_tokens for positional embedding.
        '''
        pads = torch.full_like(registers, self.padding_idx)
        expanded_src_tokens = torch.cat((pads, input_ids, registers), dim=1)
        return expanded_src_tokens
    
    def source_tokens_embedding_with_positions(self, expanded_src_tokens, total_token_nums, batch_indices, indices):
        '''
            return the embeds of source tokens
        '''
        inputs_embeds = self.embed_tokens(expanded_src_tokens)
        inputs_embeds_1 = inputs_embeds[:,:total_token_nums,:] + self.src_embed_positions(expanded_src_tokens[:,:total_token_nums])
        inputs_embeds_2 = inputs_embeds[:,total_token_nums:,:] + self.register_embed_positions(expanded_src_tokens[:,total_token_nums:])
        inputs_embeds = torch.cat((inputs_embeds_1, inputs_embeds_2), dim=1)
        inputs_embeds = inputs_embeds[batch_indices, indices]

        return inputs_embeds
    
    def fill_with_neg_inf(self, t):
        return t.float().fill_(float("-inf")).type_as(t)
    
    def check_contiguous(self, t: torch.Tensor):
        return t if t.is_contiguous() else t.contiguous()

    def build_future_mask(self, embeds, src_length, register_nums, past_key_values_length=0):
        b = register_nums.size(0)
        ns = src_length - register_nums
        if past_key_values_length == 0:
            # in training
            # 1. create mask by cache
            dim = embeds.size(1)
            if (
                self._future_mask.size(0) == 0
                or self._future_mask.size(0) < dim
                ):
                self._future_mask = torch.triu(self.fill_with_neg_inf(torch.zeros([dim, dim])), 1)
            if self._future_mask.device == embeds.device:
                mask = self._future_mask[:dim, :dim].clone()
            else:
                mask = self._future_mask[:dim, :dim].to(embeds, copy=True)

            # 2. bi-directional attention in source tokens and registers
            mask[ :src_length, :src_length] = 0.

            # 3. create batch mask
            batch_mask = mask.unsqueeze(0).expand(b, -1, -1).clone().contiguous()

            # 4. mask source tokens -> registers
            # 5. mask target -> source tokens
            batch_indices = torch.arange(b).to(batch_mask.device).view(-1, 1, 1).expand(b, dim, dim).contiguous()
            row_indices = torch.arange(dim).to(batch_mask.device).view(1, -1, 1).expand(b, dim, dim).contiguous()
            col_indices = torch.arange(dim).to(batch_mask.device).view(1, 1, -1).expand(b, dim, dim).contiguous()
            source_indices = (row_indices < ns.view(-1, 1, 1)) & (col_indices >= ns.view(-1, 1, 1)) & (col_indices < (ns + register_nums).view(-1, 1, 1)).contiguous()
            target_indices = (row_indices >= (ns + register_nums).view(-1, 1, 1)) & (col_indices < ns.view(-1, 1, 1)).contiguous()
            # 4
            batch_mask[batch_indices[source_indices], row_indices[source_indices], col_indices[source_indices]] = float('-inf')
            # 5
            batch_mask[batch_indices[target_indices], row_indices[target_indices], col_indices[target_indices]] = float('-inf')
            # shape: batch_size, head_num (1 for broadcasting), seq_len, seq_len
            batch_mask = batch_mask.unsqueeze(1)

        elif past_key_values_length > 0:
            # in generation
            # this block is only used in fairseq and is not used in huggingface,
            # because we reuse the mask by the cache.
            mask = torch.zeros(past_key_values_length + 1)
            mask = mask.to(embeds, copy=True)
            batch_mask = mask.unsqueeze(0).expand(b, -1).clone().contiguous()
            
            batch_indices = torch.arange(b).view(-1, 1).expand(b, past_key_values_length + 1).to(batch_mask.device)
            token_indices = torch.arange(past_key_values_length + 1).view(1, -1).expand(b, past_key_values_length + 1).to(batch_mask.device)
            target_to_source_mask = token_indices < ns.view(-1, 1)
            
            batch_mask[batch_indices[target_to_source_mask], token_indices[target_to_source_mask]] = float('-inf')
            batch_mask = batch_mask.unsqueeze(1)
        
        batch_mask = batch_mask.view(b, 1, batch_mask.shape[-2], batch_mask.shape[-1])
        return batch_mask

    def forward(
        self,
        input_ids: Optional[torch.Tensor] = None,
        decoder_input_ids: Optional[torch.Tensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        past_key_values: Optional[List[torch.FloatTensor]] = None,
        use_cache: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        registering_cache: dict = None,
    ):
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        use_cache = use_cache if use_cache is not None else self.config.use_cache

        # past_key_values_length
        past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0

        if past_key_values_length > 0:
            register_nums = registering_cache["register_nums"]
            src_length = registering_cache["src_length"]

        if input_ids is not None and past_key_values_length == 0:
            # ensure contiguous
            input_ids = self.check_contiguous(input_ids)
            decoder_input_ids = self.check_contiguous(decoder_input_ids)
            
            if attention_mask is None:
                # create registers from input_ids
                registers, register_nums, total_token_nums = self.create_registers(input_ids)
                # 'expanded_src_tokens' is combined by input_ids, registers, and pads. 
                expanded_src_tokens = self.combine_src_and_registers(input_ids, registers)
                token_indices = self.get_token_indices(input_ids, total_token_nums, register_nums)
                batch_indices = self.get_batch_indices(input_ids, token_indices)
                # source tokens (input_ids + registers)
                source_tokens = expanded_src_tokens[batch_indices, token_indices]

            else:
                # although we do not give the attention mask in training and the 1st step of generation,
                # we still leave this block here. 
                if registering_cache is None or \
                   not all(key in registering_cache for key in \
                   ("register_nums", "total_token_nums", "expanded_src_tokens",\
                    "batch_indices", "token_indices", "source_tokens")):
                    raise ValueError(
                        "If you generate registers by external codes, \
                        you must provide 'register_nums', 'total_token_nums', \
                        'expanded_src_tokens', 'batch_indices', 'token_indices' \
                        and 'source_tokens' in 'registering_cache' in the training."
                        )
                register_nums, total_token_nums = registering_cache["register_nums"], registering_cache["total_token_nums"]
                expanded_src_tokens = registering_cache["expanded_src_tokens"]
                batch_indices, token_indices = registering_cache["batch_indices"], registering_cache["token_indices"]
                source_tokens = registering_cache["source_tokens"]

            # ensure contiguous
            expanded_src_tokens = self.check_contiguous(expanded_src_tokens)
            source_tokens = self.check_contiguous(source_tokens)

            # get embeds with positions for source tokens (input_ids + registers)
            inputs_embeds = self.source_tokens_embedding_with_positions(expanded_src_tokens, total_token_nums, batch_indices, token_indices)

            # replace the inference trigger with langtok
            # namely, enc-tgt-dec-tgt strategy
            if decoder_input_ids[0][0].item() != source_tokens[0][-1].item():
                decoder_input_ids[:, 0] = source_tokens[:, -1]
            
            tokens = torch.cat([source_tokens, decoder_input_ids], dim=1)
            src_length = source_tokens.shape[1]
        
        decoder_inputs_embeds = self.embed_tokens(decoder_input_ids)
        decoder_inputs_embeds = decoder_inputs_embeds + self.tgt_embed_positions(decoder_input_ids, past_key_values_length, src_length=src_length)

        if past_key_values_length == 0:
            hidden_states = torch.cat([inputs_embeds, decoder_inputs_embeds], dim=1)
        else:
            hidden_states = decoder_inputs_embeds
        
        # ensure contiguous
        hidden_states = self.check_contiguous(hidden_states)

        # if attention_mask is NOT given, we build the attention mask from current hyperparams
        # if attention_mask is given, check the shape of attention mask 
        if attention_mask is None:
            attention_mask = self.build_future_mask(hidden_states, src_length, register_nums, past_key_values_length)
        else:
            bsz, src_len = hidden_states.shape[0], hidden_states.shape[1]
            tgt_len = hidden_states.shape[1] if past_key_values_length == 0 else past_key_values_length + 1
            if attention_mask.size() != (bsz, 1, src_len, tgt_len):
                raise ValueError(
                    f"Attention mask should be of size {(bsz, 1, src_len, tgt_len)}, but is {attention_mask.size()}"
                    )
        
        # ensure contiguous
        attention_mask = self.check_contiguous(attention_mask)

        # this is a param to turncate kv cache
        # in training, it's None, namely, unactivated.
        max_register_num = None
        # masking pads for attention_mask in the training or the 1st step of generation
        if past_key_values_length == 0:
            # if in generation, activate
            max_register_num = register_nums.max().item() if use_cache else None

            padding_mask = tokens.eq(self.padding_idx)
            if padding_mask.any():
                padding_mask = padding_mask.unsqueeze(1).unsqueeze(2)
                attention_mask = attention_mask.masked_fill(padding_mask == 1, float('-inf'))
        
        hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
        
        if self.gradient_checkpointing and self.training:
            if use_cache:
                logger.warning_once(
                    "`use_cache=True` is incompatible with gradient checkpointing. Setting" " `use_cache=False`..."
                )
                use_cache = False

        # decoder layers
        all_hidden_states = () if output_hidden_states else None
        next_decoder_cache = () if use_cache else None

        for idx, decoder_layer in enumerate(self.layers):
            if output_hidden_states:
                all_hidden_states += (hidden_states,)

            past_key_value = past_key_values[idx] if past_key_values is not None else None

            if self.gradient_checkpointing and self.training:
                layer_outputs = self._gradient_checkpointing_func(
                    decoder_layer.__call__,
                    hidden_states,
                    attention_mask,
                    past_key_value=None,
                    use_cache=use_cache,
                )
            else:
                layer_outputs = decoder_layer(
                    hidden_states,
                    attention_mask=attention_mask,
                    past_key_value=past_key_value,
                    use_cache=use_cache,
                )

                hidden_states = layer_outputs[0]

            if use_cache:
                if past_key_values_length > 0:
                    next_decoder_cache += (layer_outputs[1],)
                else:
                    cache_key, cache_value = layer_outputs[1]
                    clipped_rep = (
                        cache_key[:, :, src_length - max_register_num:, :],
                        cache_value[:, :, src_length - max_register_num:, :]
                    )
                    next_decoder_cache += (clipped_rep,)
        
        if past_key_values_length == 0:
            hidden_states = hidden_states[:,src_length:,:]

        hidden_states = self.layer_norm(hidden_states)

        # add hidden states from the last decoder layer
        if output_hidden_states:
            all_hidden_states += (hidden_states,)
        
        next_cache = next_decoder_cache if use_cache else None
        
        model_output = BaseModelOutputWithPastAndCrossAttentions(
            last_hidden_state=hidden_states,
            past_key_values=next_cache,
            hidden_states=all_hidden_states,
        )

        # the registering cache used in generation
        # in the 1st step, we turncate the kv cache to save cost, so we have to change the src_length
        if use_cache:
            model_output.registering_cache = {
                "register_nums": register_nums,
                "src_length": src_length if past_key_values_length > 0 else max_register_num,
                "attention_mask": attention_mask if past_key_values_length > 0 else None
            }
        else:
            model_output.registering_cache = None
        
        return model_output
    

# Copied from transformers.models.m2m_100.modeling_m2m_100.M2M100ScaledWordEmbedding
class MitreScaledWordEmbedding(nn.Embedding):
    """
    This module overrides nn.Embeddings' forward by multiplying with embeddings scale.
    """
    def __init__(self, num_embeddings: int, embedding_dim: int, padding_idx: int, embed_scale: Optional[float] = 1.0):
        super().__init__(num_embeddings, embedding_dim, padding_idx)
        self.embed_scale = embed_scale

    def forward(self, input_ids: torch.Tensor):
        return super().forward(input_ids) * self.embed_scale


class MitreSinusoidalPositionalEmbedding(nn.Module):
    """This module produces sinusoidal positional embeddings of any length."""

    def __init__(self, num_positions: int, embedding_dim: int, padding_idx: Optional[int] = None):
        super().__init__()
        self.offset = 2
        self.embedding_dim = embedding_dim
        self.padding_idx = padding_idx
        self.make_weights(num_positions + self.offset, embedding_dim, padding_idx)

    def make_weights(self, num_embeddings: int, embedding_dim: int, padding_idx: Optional[int] = None):
        emb_weights = self.get_embedding(num_embeddings, embedding_dim, padding_idx)
        if hasattr(self, "weights"):
            # in forward put the weights on the correct dtype and device of the param
            emb_weights = emb_weights.to(dtype=self.weights.dtype, device=self.weights.device)

        self.register_buffer("weights", emb_weights, persistent=False)

    @staticmethod
    def get_embedding(num_embeddings: int, embedding_dim: int, padding_idx: Optional[int] = None):
        """
        Build sinusoidal embeddings.

        This matches the implementation in tensor2tensor, but differs slightly from the description in Section 3.5 of
        "Attention Is All You Need".
        """
        half_dim = embedding_dim // 2
        emb = math.log(10000) / (half_dim - 1)
        emb = torch.exp(torch.arange(half_dim, dtype=torch.int64).float() * -emb)
        emb = torch.arange(num_embeddings, dtype=torch.int64).float().unsqueeze(1) * emb.unsqueeze(0)
        emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1).view(num_embeddings, -1)
        if embedding_dim % 2 == 1:
            # zero pad
            emb = torch.cat([emb, torch.zeros(num_embeddings, 1)], dim=1)
        if padding_idx is not None:
            emb[padding_idx, :] = 0

        return emb.to(torch.get_default_dtype())

    @torch.no_grad()
    def forward(
        self, input_ids: torch.Tensor = None, past_key_values_length: int = 0, src_length: int = 0
    ):
        bsz, seq_len = input_ids.size()
        # Create the position ids from the input token ids. Any padded tokens remain padded.
        position_ids = create_position_ids_from_input_ids(input_ids, self.padding_idx, past_key_values_length).to(
            input_ids.device
        )

        if past_key_values_length > 0 and src_length > 0:
            position_ids = torch.where(position_ids == 1, position_ids, position_ids - src_length)
        
        # expand embeddings if needed
        max_pos = self.padding_idx + 1 + seq_len + past_key_values_length
        
        if max_pos > self.weights.size(0):
            self.make_weights(max_pos + self.offset, self.embedding_dim, self.padding_idx)

        return self.weights.index_select(0, position_ids.view(-1)).view(bsz, seq_len, self.weights.shape[-1]).detach()

class MitreModel(MitrePreTrainedModel):
    _tied_weights_keys = ["decoder.embed_tokens.weight"]

    def __init__(self, config: MitreConfig):
        super().__init__(config)

        self.decoder = MitreDecoder(config)

        # Initialize weights and apply final processing
        self.post_init()

    def get_input_embeddings(self):
        return self.decoder.embed_tokens

    def get_decoder(self):
        return self.decoder

    def forward(
        self,
        input_ids: Optional[torch.LongTensor] = None,
        decoder_input_ids: Optional[torch.Tensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        registering_cache: dict = None,
    ) -> Union[Tuple[torch.Tensor], Seq2SeqModelOutput]:
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        use_cache = use_cache if use_cache is not None else self.config.use_cache

        decoder_outputs = self.decoder(
            input_ids=input_ids,
            decoder_input_ids=decoder_input_ids,
            attention_mask=attention_mask,
            past_key_values=past_key_values,
            use_cache=use_cache,
            output_hidden_states=output_hidden_states,
            registering_cache=registering_cache
        )

        model_output = Seq2SeqModelOutput(
            last_hidden_state=decoder_outputs.last_hidden_state,
            past_key_values=decoder_outputs.past_key_values,
            decoder_hidden_states=decoder_outputs.hidden_states,
            decoder_attentions=decoder_outputs.attentions,
        )
        model_output.registering_cache = decoder_outputs.registering_cache
        return model_output

class MitreForConditionalGeneration(MitrePreTrainedModel, GenerationMixin):
    base_model_prefix = "model"
    _tied_weights_keys = ["decoder.embed_tokens.weight", "lm_head.weight"]

    def __init__(self, config: MitreConfig):
        super().__init__(config)
        self.model = MitreModel(config)
        self.lm_head = nn.Linear(config.d_model, self.model.decoder.embed_tokens.num_embeddings, bias=False)

        # Initialize weights and apply final processing
        self.post_init()

    def get_decoder(self):
        return self.model.get_decoder()

    def get_output_embeddings(self):
        return self.lm_head

    def set_output_embeddings(self, new_embeddings):
        self.lm_head = new_embeddings

    def forward(
        self,
        input_ids: Optional[torch.LongTensor] = None,
        decoder_input_ids: Optional[torch.LongTensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
        labels: Optional[torch.LongTensor] = None,
        use_cache: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        registering_cache: dict = None,
    ) -> Union[Tuple[torch.Tensor], Seq2SeqLMOutput]:
        
        outputs = self.model(
            input_ids=input_ids,
            decoder_input_ids=decoder_input_ids,
            attention_mask=attention_mask,
            past_key_values=past_key_values,
            use_cache=use_cache,
            output_hidden_states=output_hidden_states,
            registering_cache=registering_cache,
        )

        lm_logits = self.lm_head(outputs[0])
        
        if labels is not None:
            raise NotImplementedError("Please implement your loss function here.")

        model_output = Seq2SeqLMOutput(
            loss=None,
            logits=lm_logits,
            past_key_values=outputs.past_key_values,
            decoder_hidden_states=outputs.decoder_hidden_states,
            decoder_attentions=outputs.decoder_attentions,
        )
        model_output.registering_cache = outputs.registering_cache
        return model_output

    @staticmethod
    def _reorder_cache(past_key_values, beam_idx):
        reordered_past = ()
        for layer_past in past_key_values:
            reordered_past += (
                tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
            )
        return reordered_past
    
    @staticmethod
    def _reorder_register_cache(t, beam_idx):
        """ a costumized reorder method """
        return t.index_select(dim=0, index=beam_idx.to(t.device))
    
    @staticmethod
    def _expand_inputs_for_generation(
        input_ids: Optional[torch.LongTensor] = None,
        beam_size: int = 1,
    ) -> torch.LongTensor:
        """
          Expands input_ids from [batch_size, len(tokens)] to [batch_size * expand_size, , len(tokens)]
          This is simplified from 'transformers.generation.utils.GenerationMixin._expand_inputs_for_generation'
        """
        if beam_size == 1:
            return input_ids

        return input_ids.repeat_interleave(beam_size, dim=0)
    
    def generate(self,
        input_ids: Optional[torch.Tensor] = None,
        generation_config: Optional[GenerationConfig] = None,
        **kwargs: Dict
        ):
        """
            Inference with beam search.
            This code is an improved version of transformers.generation.utils.GenerationMixin.generate.
            There are two main improvements:
            1. 'soft early_stop' in beam search.
                a) problem in the vanilla version.
                In multilingual translation models such as NLLB and M2M, the vanilla early stop in BeamSearchScorer
                (the official implementation by HuggingFace) marks ended sequences with pad(1). However, these ended
                sequences are still fed into the model, leading to significant memory waste. 
                b) our improvement.
                We implemented a "soft early stop" to address this issue. Instead of modifying BeamSearchScorer
                (to maintain code flexibility), we remove ended sequences from the input. Since this changes the
                shape of the output hidden states, we insert placeholders to maintain compatibility with
                BeamSearchScorer's state shapes.
                Based on our tests, this improvement reduces memory usage by half.
            2. mask reusing.
                a) problem:
                Registers require attention masks at each step.
                A sequence may consist of four parts: padding, source tokens, registers, and target tokens.
                During training, we mask all tokens before registers for target token generation. During generation,
                we cannot allow target tokens to "see" padding tokens, requiring masks at every step.
                This leads to computational inefficiency.
                b) our improvement.
                First, we turncate the source tokens and their representations to reduce cost.
                Second, for source tokens acting as placeholders, we modified the mask generation logic compared to
                our Fairseq implementation.
                Third, to avoid regenerating masks at each step, we cache the mask in 'registering_cache', where cached
                mask is managed like the key-value cache in beam search. Then, At every step, we add a column of zeros
                to maintain alignment.
        """
        if generation_config != None:
            assert type(generation_config) is GenerationConfig
            self.generation_config = generation_config
        self.generation_config.update(**kwargs)

        generation_config = self.generation_config

        batch_size = input_ids.shape[0]
        beam_size = generation_config.num_beams
        device = input_ids.device
        max_cache_length = generation_config.max_length
        eos_token_id = torch.Tensor([generation_config.eos_token_id])

        # initial the target tokens
        decoder_input_ids = torch.full(
            (batch_size, 1), 
            self.generation_config.decoder_start_token_id, 
            dtype=input_ids.dtype, 
            device=device
        )
        
        beam_scorer = BeamSearchScorer(
            batch_size=batch_size,
            num_beams=beam_size,
            device=device,
            length_penalty=self.generation_config.length_penalty,
            do_early_stopping=self.generation_config.early_stopping,
            num_beam_hyps_to_keep=self.generation_config.num_return_sequences,
            max_length=max_cache_length,
        )

        input_ids = self._expand_inputs_for_generation(input_ids, beam_size)
        decoder_input_ids = self._expand_inputs_for_generation(decoder_input_ids, beam_size)
        cur_len = decoder_input_ids.shape[1]

        this_peer_finished = False
        past_key_values = None
        registering_cache= None
        attention_mask = None
        # done_mask shows the ended sequences.
        # (~done_mask) shows the running sequences.
        done_mask = None
        
        # we follow the style of M2M and NLLB
        # so we simplify the initialization of thoes two processors.
        logits_processor = LogitsProcessorList()
        stopping_criteria = StoppingCriteriaList()

        beam_scores = torch.zeros((batch_size, beam_size), dtype=torch.float, device=input_ids.device)
        beam_scores[:, 1:] = -1e9
        beam_scores = beam_scores.view((batch_size * beam_size,))      
        while not this_peer_finished:

            if past_key_values is not None:
                decoder_input_ids_for_generation = decoder_input_ids[:, -1:]
                attention_mask = registering_cache["attention_mask"]
                # Get the mask when the first time using kv cache.
                # After it, we can simply repeat 0. (the last column of mask) to get the next mask.
                # As a result, we avoid generate the mask from scratch in kv cache and save memory.
                if attention_mask is not None:
                    attention_mask = torch.cat((attention_mask, attention_mask[..., -1:]), dim=-1)
            else:
                decoder_input_ids_for_generation = decoder_input_ids

            outputs = self(
                input_ids, 
                decoder_input_ids_for_generation, 
                attention_mask=attention_mask, 
                past_key_values=past_key_values, 
                use_cache=True, 
                registering_cache=registering_cache
            )
            del input_ids
            input_ids = None

            past_key_values = outputs.past_key_values
            registering_cache = outputs.registering_cache
            next_token_logits = outputs.logits[:, -1, :].clone().float()
            del outputs

            next_token_logits = next_token_logits.to(device)
            next_token_scores = nn.functional.log_softmax(
                next_token_logits, dim=-1
            )  # (batch_size * num_beams, vocab_size)

            next_token_scores_processed = logits_processor(decoder_input_ids, next_token_scores)

            # if any sequence is ended, we have to keep the shape of Scorer's states.
            # Details are described in the head of this function.
            if done_mask is not None:
                if done_mask.any():
                    # the placeholder of scores is '0.'
                    restored_tensor = torch.zeros(
                        (batch_size * beam_size, next_token_scores_processed.shape[1]),
                        dtype=next_token_scores_processed.dtype,
                        device=next_token_scores_processed.device
                    )
                    restored_tensor[~done_mask] = next_token_scores_processed
                    next_token_scores_processed = restored_tensor
                    # the placeholder of tokens is 'pad_token_id'
                    restored_tokens = torch.full(
                        (batch_size * beam_size, decoder_input_ids.shape[1]), 
                        self.generation_config.pad_token_id, 
                        dtype=decoder_input_ids.dtype, 
                        device=device
                        )
                    restored_tokens[~done_mask] = decoder_input_ids
                    decoder_input_ids = restored_tokens
            
            next_token_scores = next_token_scores_processed + beam_scores[:, None].expand_as(
                next_token_scores_processed
            )

            # reshape for beam search
            vocab_size = next_token_scores.shape[-1]
            next_token_scores = next_token_scores.view(batch_size, beam_size * vocab_size)

            # Beam token selection: pick 1 + eos_token_id.shape[0] next tokens for each beam so we have at least 1
            # non eos token per beam.
            n_eos_tokens = eos_token_id.shape[0] if eos_token_id is not None else 0
            n_tokens_to_keep = max(2, 1 + n_eos_tokens) * beam_size
            next_token_scores, next_tokens = torch.topk(
                    next_token_scores, n_tokens_to_keep, dim=1, largest=True, sorted=True
                )
            
            next_indices = torch.div(next_tokens, vocab_size, rounding_mode="floor")
            next_tokens = next_tokens % vocab_size

            beam_outputs = beam_scorer.process(
                decoder_input_ids,
                next_token_scores,
                next_tokens,
                next_indices,
                pad_token_id=generation_config.pad_token_id,
                eos_token_id=generation_config.eos_token_id,
                decoder_prompt_len=1,
            )
            beam_scores = beam_outputs["next_beam_scores"]
            beam_next_tokens = beam_outputs["next_beam_tokens"]
            beam_idx = beam_outputs["next_beam_indices"]

            # 'last_done_mask' is used for reordering cache
            # details are described in the next code block
            if done_mask is not None:
                last_done_mask = done_mask
            
            # get the newest status of sequences.
            # then, filter the beam_idx
            done_mask = beam_scorer._done.clone().view(-1)
            done_mask = self._expand_inputs_for_generation(done_mask, beam_size)
            beam_idx = beam_idx[~done_mask]

            decoder_input_ids = torch.cat([decoder_input_ids[beam_idx, :], beam_next_tokens[~done_mask].unsqueeze(-1)], dim=-1)
            
            # different from processing tokens, caches' order is decided by 'tokens', 'done_mask' and
            # 'beam_idx', simultaneously.
            if decoder_input_ids_for_generation.shape[0] < beam_next_tokens.shape[0]:
                # Take carefule! If the running sequences' num is small than the num of input sequences,
                # it means the Scorer decides to end it, but the cache still follows the last status.
                # Therefore, we should employ the last done mask rather than newest done mask.
                if (~done_mask).sum() < decoder_input_ids_for_generation.shape[0]:
                    count_mask = last_done_mask
                else:
                    count_mask = done_mask
                # For biasing the beam_idx
                # Example:
                # done_mask with beam size of 2: [f, f, t, t, f, f]
                # beam_idx: [0, 0, 2, 2, 4, 5]
                # reorder_idx: [0-0, 0-0, 4-2, 5-2]
                prefix_sum = torch.cat([
                    torch.zeros_like(count_mask[:1], dtype=torch.long),
                    torch.cumsum(count_mask.long(), dim=0)
                    ], dim=0)
                reorder_idx = beam_idx - prefix_sum[beam_idx]
                not_done = ~done_mask[beam_idx]
                reorder_idx = reorder_idx[not_done]     
            else:
                reorder_idx = beam_idx

            past_key_values = self._reorder_cache(past_key_values, reorder_idx)
            registering_cache["register_nums"] = self._reorder_register_cache(registering_cache["register_nums"], reorder_idx)
            if registering_cache["attention_mask"] is not None:
                registering_cache["attention_mask"] = self._reorder_register_cache(registering_cache["attention_mask"], reorder_idx)
            
            cur_len = cur_len + 1

            if beam_scorer.is_done:
                this_peer_finished = True

        sequence_outputs = beam_scorer.finalize(
            decoder_input_ids,
            beam_scores,
            next_tokens,
            next_indices,
            pad_token_id=generation_config.pad_token_id,
            eos_token_id=eos_token_id,
            max_length=stopping_criteria.max_length,
            decoder_prompt_len=1,
        )

        return sequence_outputs["sequences"]


MitreForConditionalGeneration.register_for_auto_class("AutoModel")