File size: 46,039 Bytes
9685c83 9be44fc 9685c83 1c61cca 9685c83 74025f2 9685c83 74025f2 9685c83 74025f2 9685c83 74025f2 9685c83 1d88f72 9685c83 74025f2 9685c83 74025f2 9685c83 74025f2 9685c83 74025f2 9685c83 74025f2 9685c83 317d82a 9685c83 317d82a 9685c83 74025f2 9685c83 74025f2 9685c83 74025f2 9685c83 74025f2 9685c83 74025f2 9685c83 74025f2 9685c83 74025f2 9685c83 74025f2 9685c83 317d82a 1d88f72 317d82a 9685c83 1c61cca 1d88f72 1c61cca 1d88f72 1c61cca 1d88f72 1c61cca 1d88f72 1c61cca 9685c83 74025f2 1d88f72 9685c83 1d88f72 9685c83 1d88f72 9685c83 74025f2 317d82a 74025f2 9685c83 1d88f72 74025f2 9685c83 1d88f72 9685c83 1d88f72 9685c83 1d88f72 9685c83 1d88f72 9685c83 1d88f72 9685c83 1d88f72 9685c83 1d88f72 9685c83 5805e00 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 |
# coding=utf-8
import math
from typing import List, Optional, Tuple, Union, Dict, Any
import torch
from torch import nn
from .configuration_mitre import MitreConfig
from transformers.utils import logging
from transformers.generation import GenerationMixin
from transformers.modeling_utils import PreTrainedModel
from transformers.activations import ACT2FN
from transformers.modeling_outputs import (
BaseModelOutputWithPastAndCrossAttentions,
Seq2SeqLMOutput,
Seq2SeqModelOutput,
)
from transformers.generation.configuration_utils import GenerationConfig
from transformers.generation.beam_search import BeamSearchScorer
from transformers.generation.logits_process import LogitsProcessorList
from transformers.generation.stopping_criteria import StoppingCriteriaList
logger = logging.get_logger(__name__)
def create_position_ids_from_input_ids(input_ids, padding_idx, past_key_values_length=0):
"""
Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding symbols
are ignored. This is modified from fairseq's `utils.make_positions`.
"""
mask = input_ids.ne(padding_idx).int()
incremental_indices = (torch.cumsum(mask, dim=1).type_as(mask) + past_key_values_length) * mask
return incremental_indices.long() + padding_idx
# Modified from transformers.models.m2m_100.modeling_m2m_100.M2M100Attention
# and transformers.models.m2m_100.modeling_m2m_100.M2M100SdpaAttention
class MitreSdpaAttention(nn.Module):
def __init__(
self,
embed_dim: int,
num_heads: int,
dropout: float = 0.0,
bias: bool = True,
config: Optional[MitreConfig] = None,
):
super().__init__()
self.embed_dim = embed_dim
self.num_heads = num_heads
self.dropout = dropout
self.head_dim = embed_dim // num_heads
self.config = config
if (self.head_dim * num_heads) != self.embed_dim:
raise ValueError(
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}"
f" and `num_heads`: {num_heads})."
)
self.scaling = self.head_dim**-0.5
self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
def forward(
self,
hidden_states: torch.Tensor,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
attention_mask: Optional[torch.Tensor] = None,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
"""
1. MitreModel uses MitreSdpaAttention, which is modified from M2M100SdpaAttention.
Notably, neither of them supports 'output_attentions=True' or 'layer_head_mask is not None',
meaning that attn_weights are not included in the output.
Improving this feature is currently a low priority, and we leave this functionality for users to customize.
2.We plan to enhance this code with Flash Attention v2 in the future.
"""
bsz, tgt_len, _ = hidden_states.size()
# get query proj
query_states = self.q_proj(hidden_states)
if past_key_value is not None:
# reuse k, v, self_attention
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
key_states = torch.cat([past_key_value[0], key_states], dim=2)
value_states = torch.cat([past_key_value[1], value_states], dim=2)
else:
# self_attention
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
past_key_value = (key_states, value_states)
query_states = self._shape(query_states, tgt_len, bsz)
attn_output = torch.nn.functional.scaled_dot_product_attention(
query_states,
key_states,
value_states,
attn_mask=attention_mask,
dropout_p=self.dropout if self.training else 0.0,
is_causal=False,
)
if attn_output.size() != (bsz, self.num_heads, tgt_len, self.head_dim):
raise ValueError(
f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is"
f" {attn_output.size()}"
)
attn_output = attn_output.transpose(1, 2)
# Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be
# partitioned across GPUs when using tensor-parallelism.
attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim)
attn_output = self.out_proj(attn_output)
return attn_output, None, past_key_value
# Modified from transformers.models.m2m_100.modeling_m2m100.M2M100DecoderLayer
class MitreDecoderLayer(nn.Module):
def __init__(self, config: MitreConfig):
super().__init__()
self.embed_dim = config.d_model
self.self_attn = MitreSdpaAttention(
embed_dim=self.embed_dim,
num_heads=config.decoder_attention_heads,
dropout=config.attention_dropout,
config=config,
)
self.dropout = config.dropout
self.activation_fn = ACT2FN[config.activation_function]
self.activation_dropout = config.activation_dropout
self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim)
self.fc1 = nn.Linear(self.embed_dim, config.decoder_ffn_dim)
self.fc2 = nn.Linear(config.decoder_ffn_dim, self.embed_dim)
self.final_layer_norm = nn.LayerNorm(self.embed_dim)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
use_cache: Optional[bool] = True,
) -> torch.Tensor:
"""
Args:
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
attention_mask (`torch.FloatTensor`): attention mask of size
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
past_key_value (`Tuple(torch.FloatTensor)`): cached past key and value projection states
"""
residual = hidden_states
hidden_states = self.self_attn_layer_norm(hidden_states)
# Self Attention
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2
self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
# add present self-attn cache to positions 1,2 of present_key_value tuple
hidden_states, _, present_key_value = self.self_attn(
hidden_states=hidden_states,
past_key_value=self_attn_past_key_value,
attention_mask=attention_mask,
)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
hidden_states = residual + hidden_states
# Fully Connected
residual = hidden_states
hidden_states = self.final_layer_norm(hidden_states)
hidden_states = self.activation_fn(self.fc1(hidden_states))
hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training)
hidden_states = self.fc2(hidden_states)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
hidden_states = residual + hidden_states
outputs = (hidden_states,)
if use_cache:
outputs += (present_key_value,)
return outputs
class MitrePreTrainedModel(PreTrainedModel):
config_class = MitreConfig
base_model_prefix = "model"
supports_gradient_checkpointing = True
_no_split_modules = ["MitreDecoderLayer"]
# we plan to implement codes for falsh attention v2
_supports_flash_attn_2 = False
_supports_sdpa = True
def _init_weights(self, module):
std = self.config.init_std
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
class MitreDecoder(MitrePreTrainedModel):
"""
Transformer decoder consisting of *config.decoder_layers* layers. Each layer is a [`MitreDecoderLayer`]
Args:
config: MitreConfig
embed_tokens (nn.Embedding): output embedding
"""
def __init__(self, config: MitreConfig):
super().__init__(config)
self.dropout = config.dropout
self.padding_idx = config.pad_token_id
self.max_target_positions = config.max_position_embeddings
embed_scale = math.sqrt(config.d_model) if config.scale_embedding else 1.0
self.embed_tokens = MitreScaledWordEmbedding(
config.vocab_size, config.d_model, self.padding_idx, embed_scale=embed_scale
)
self.src_embed_positions = MitreSinusoidalPositionalEmbedding(
config.max_position_embeddings,
config.d_model,
self.padding_idx,
)
self.register_embed_positions = MitreSinusoidalPositionalEmbedding(
config.max_position_embeddings,
config.d_model,
self.padding_idx,
)
self.tgt_embed_positions = MitreSinusoidalPositionalEmbedding(
config.max_position_embeddings,
config.d_model,
self.padding_idx,
)
self.layers = nn.ModuleList([MitreDecoderLayer(config) for _ in range(config.decoder_layers)])
if config._attn_implementation != "sdpa":
raise NotImplementedError("Other attention mechanism are not implemented yet.")
# TODO implement flash atten v2 for MITRE
# self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2"
self._use_sdpa = config._attn_implementation == "sdpa"
self.layer_norm = nn.LayerNorm(config.d_model)
self.gradient_checkpointing = False
self._future_mask = torch.empty(0)
# Initialize weights and apply final processing
self.post_init()
def create_registers(self, input_ids):
'''
create registers by duplicating the language tag respective to each sentence.
length(registers) = length(real_tokens) = length(tokens) - length(pads)
'''
register_nums = (~input_ids.eq(self.padding_idx)).sum(dim=1)
max_register_nums = register_nums.max().item()
total_token_nums = input_ids.size(1) + max_register_nums
batch_size = input_ids.size(0)
registers = input_ids[range(batch_size), torch.argmax(input_ids, dim=-1)].unsqueeze(1).repeat(1, max_register_nums)
return registers, register_nums, total_token_nums
def get_token_indices(self, input_ids, total_token_nums, register_nums):
'''
return a token_indices for selecting source tokens from expanded_src_tokens
'''
token_indices = torch.arange(total_token_nums).expand(input_ids.size(0), -1).to(input_ids.device)
token_indices = token_indices + register_nums.unsqueeze(1)
return token_indices
def get_batch_indices(self, input_ids, token_indices):
'''
return a batch_indices for selecting source tokens from expanded_src_tokens
'''
batch_indices = torch.arange(input_ids.shape[0]).unsqueeze(1).expand(-1, token_indices.size(1)).contiguous()
return batch_indices
def combine_src_and_registers(self, input_ids, registers):
'''
return a expanded_src_tokens for positional embedding.
'''
pads = torch.full_like(registers, self.padding_idx)
expanded_src_tokens = torch.cat((pads, input_ids, registers), dim=1)
return expanded_src_tokens
def source_tokens_embedding_with_positions(self, expanded_src_tokens, total_token_nums, batch_indices, indices):
'''
return the embeds of source tokens
'''
inputs_embeds = self.embed_tokens(expanded_src_tokens)
inputs_embeds_1 = inputs_embeds[:,:total_token_nums,:] + self.src_embed_positions(expanded_src_tokens[:,:total_token_nums])
inputs_embeds_2 = inputs_embeds[:,total_token_nums:,:] + self.register_embed_positions(expanded_src_tokens[:,total_token_nums:])
inputs_embeds = torch.cat((inputs_embeds_1, inputs_embeds_2), dim=1)
inputs_embeds = inputs_embeds[batch_indices, indices]
return inputs_embeds
def fill_with_neg_inf(self, t):
return t.float().fill_(float("-inf")).type_as(t)
def check_contiguous(self, t: torch.Tensor):
return t if t.is_contiguous() else t.contiguous()
def build_future_mask(self, embeds, src_length, register_nums, past_key_values_length=0):
b = register_nums.size(0)
ns = src_length - register_nums
if past_key_values_length == 0:
# in training
# 1. create mask by cache
dim = embeds.size(1)
if (
self._future_mask.size(0) == 0
or self._future_mask.size(0) < dim
):
self._future_mask = torch.triu(self.fill_with_neg_inf(torch.zeros([dim, dim])), 1)
if self._future_mask.device == embeds.device:
mask = self._future_mask[:dim, :dim].clone()
else:
mask = self._future_mask[:dim, :dim].to(embeds, copy=True)
# 2. bi-directional attention in source tokens and registers
mask[ :src_length, :src_length] = 0.
# 3. create batch mask
batch_mask = mask.unsqueeze(0).expand(b, -1, -1).clone().contiguous()
# 4. mask source tokens -> registers
# 5. mask target -> source tokens
batch_indices = torch.arange(b).to(batch_mask.device).view(-1, 1, 1).expand(b, dim, dim).contiguous()
row_indices = torch.arange(dim).to(batch_mask.device).view(1, -1, 1).expand(b, dim, dim).contiguous()
col_indices = torch.arange(dim).to(batch_mask.device).view(1, 1, -1).expand(b, dim, dim).contiguous()
source_indices = (row_indices < ns.view(-1, 1, 1)) & (col_indices >= ns.view(-1, 1, 1)) & (col_indices < (ns + register_nums).view(-1, 1, 1)).contiguous()
target_indices = (row_indices >= (ns + register_nums).view(-1, 1, 1)) & (col_indices < ns.view(-1, 1, 1)).contiguous()
# 4
batch_mask[batch_indices[source_indices], row_indices[source_indices], col_indices[source_indices]] = float('-inf')
# 5
batch_mask[batch_indices[target_indices], row_indices[target_indices], col_indices[target_indices]] = float('-inf')
# shape: batch_size, head_num (1 for broadcasting), seq_len, seq_len
batch_mask = batch_mask.unsqueeze(1)
elif past_key_values_length > 0:
# in generation
# this block is only used in fairseq and is not used in huggingface,
# because we reuse the mask by the cache.
mask = torch.zeros(past_key_values_length + 1)
mask = mask.to(embeds, copy=True)
batch_mask = mask.unsqueeze(0).expand(b, -1).clone().contiguous()
batch_indices = torch.arange(b).view(-1, 1).expand(b, past_key_values_length + 1).to(batch_mask.device)
token_indices = torch.arange(past_key_values_length + 1).view(1, -1).expand(b, past_key_values_length + 1).to(batch_mask.device)
target_to_source_mask = token_indices < ns.view(-1, 1)
batch_mask[batch_indices[target_to_source_mask], token_indices[target_to_source_mask]] = float('-inf')
batch_mask = batch_mask.unsqueeze(1)
batch_mask = batch_mask.view(b, 1, batch_mask.shape[-2], batch_mask.shape[-1])
return batch_mask
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
decoder_input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
use_cache: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
registering_cache: dict = None,
):
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
# past_key_values_length
past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
if past_key_values_length > 0:
register_nums = registering_cache["register_nums"]
src_length = registering_cache["src_length"]
if input_ids is not None and past_key_values_length == 0:
# ensure contiguous
input_ids = self.check_contiguous(input_ids)
decoder_input_ids = self.check_contiguous(decoder_input_ids)
if attention_mask is None:
# create registers from input_ids
registers, register_nums, total_token_nums = self.create_registers(input_ids)
# 'expanded_src_tokens' is combined by input_ids, registers, and pads.
expanded_src_tokens = self.combine_src_and_registers(input_ids, registers)
token_indices = self.get_token_indices(input_ids, total_token_nums, register_nums)
batch_indices = self.get_batch_indices(input_ids, token_indices)
# source tokens (input_ids + registers)
source_tokens = expanded_src_tokens[batch_indices, token_indices]
else:
# although we do not give the attention mask in training and the 1st step of generation,
# we still leave this block here.
if registering_cache is None or \
not all(key in registering_cache for key in \
("register_nums", "total_token_nums", "expanded_src_tokens",\
"batch_indices", "token_indices", "source_tokens")):
raise ValueError(
"If you generate registers by external codes, \
you must provide 'register_nums', 'total_token_nums', \
'expanded_src_tokens', 'batch_indices', 'token_indices' \
and 'source_tokens' in 'registering_cache' in the training."
)
register_nums, total_token_nums = registering_cache["register_nums"], registering_cache["total_token_nums"]
expanded_src_tokens = registering_cache["expanded_src_tokens"]
batch_indices, token_indices = registering_cache["batch_indices"], registering_cache["token_indices"]
source_tokens = registering_cache["source_tokens"]
# ensure contiguous
expanded_src_tokens = self.check_contiguous(expanded_src_tokens)
source_tokens = self.check_contiguous(source_tokens)
# get embeds with positions for source tokens (input_ids + registers)
inputs_embeds = self.source_tokens_embedding_with_positions(expanded_src_tokens, total_token_nums, batch_indices, token_indices)
# replace the inference trigger with langtok
# namely, enc-tgt-dec-tgt strategy
if decoder_input_ids[0][0].item() != source_tokens[0][-1].item():
decoder_input_ids[:, 0] = source_tokens[:, -1]
tokens = torch.cat([source_tokens, decoder_input_ids], dim=1)
src_length = source_tokens.shape[1]
decoder_inputs_embeds = self.embed_tokens(decoder_input_ids)
decoder_inputs_embeds = decoder_inputs_embeds + self.tgt_embed_positions(decoder_input_ids, past_key_values_length, src_length=src_length)
if past_key_values_length == 0:
hidden_states = torch.cat([inputs_embeds, decoder_inputs_embeds], dim=1)
else:
hidden_states = decoder_inputs_embeds
# ensure contiguous
hidden_states = self.check_contiguous(hidden_states)
# if attention_mask is NOT given, we build the attention mask from current hyperparams
# if attention_mask is given, check the shape of attention mask
if attention_mask is None:
attention_mask = self.build_future_mask(hidden_states, src_length, register_nums, past_key_values_length)
else:
bsz, src_len = hidden_states.shape[0], hidden_states.shape[1]
tgt_len = hidden_states.shape[1] if past_key_values_length == 0 else past_key_values_length + 1
if attention_mask.size() != (bsz, 1, src_len, tgt_len):
raise ValueError(
f"Attention mask should be of size {(bsz, 1, src_len, tgt_len)}, but is {attention_mask.size()}"
)
# ensure contiguous
attention_mask = self.check_contiguous(attention_mask)
# this is a param to turncate kv cache
# in training, it's None, namely, unactivated.
max_register_num = None
# masking pads for attention_mask in the training or the 1st step of generation
if past_key_values_length == 0:
# if in generation, activate
max_register_num = register_nums.max().item() if use_cache else None
padding_mask = tokens.eq(self.padding_idx)
if padding_mask.any():
padding_mask = padding_mask.unsqueeze(1).unsqueeze(2)
attention_mask = attention_mask.masked_fill(padding_mask == 1, float('-inf'))
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
if self.gradient_checkpointing and self.training:
if use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting" " `use_cache=False`..."
)
use_cache = False
# decoder layers
all_hidden_states = () if output_hidden_states else None
next_decoder_cache = () if use_cache else None
for idx, decoder_layer in enumerate(self.layers):
if output_hidden_states:
all_hidden_states += (hidden_states,)
past_key_value = past_key_values[idx] if past_key_values is not None else None
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
decoder_layer.__call__,
hidden_states,
attention_mask,
past_key_value=None,
use_cache=use_cache,
)
else:
layer_outputs = decoder_layer(
hidden_states,
attention_mask=attention_mask,
past_key_value=past_key_value,
use_cache=use_cache,
)
hidden_states = layer_outputs[0]
if use_cache:
if past_key_values_length > 0:
next_decoder_cache += (layer_outputs[1],)
else:
cache_key, cache_value = layer_outputs[1]
clipped_rep = (
cache_key[:, :, src_length - max_register_num:, :],
cache_value[:, :, src_length - max_register_num:, :]
)
next_decoder_cache += (clipped_rep,)
if past_key_values_length == 0:
hidden_states = hidden_states[:,src_length:,:]
hidden_states = self.layer_norm(hidden_states)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
next_cache = next_decoder_cache if use_cache else None
model_output = BaseModelOutputWithPastAndCrossAttentions(
last_hidden_state=hidden_states,
past_key_values=next_cache,
hidden_states=all_hidden_states,
)
# the registering cache used in generation
# in the 1st step, we turncate the kv cache to save cost, so we have to change the src_length
if use_cache:
model_output.registering_cache = {
"register_nums": register_nums,
"src_length": src_length if past_key_values_length > 0 else max_register_num,
"attention_mask": attention_mask if past_key_values_length > 0 else None
}
else:
model_output.registering_cache = None
return model_output
# Copied from transformers.models.m2m_100.modeling_m2m_100.M2M100ScaledWordEmbedding
class MitreScaledWordEmbedding(nn.Embedding):
"""
This module overrides nn.Embeddings' forward by multiplying with embeddings scale.
"""
def __init__(self, num_embeddings: int, embedding_dim: int, padding_idx: int, embed_scale: Optional[float] = 1.0):
super().__init__(num_embeddings, embedding_dim, padding_idx)
self.embed_scale = embed_scale
def forward(self, input_ids: torch.Tensor):
return super().forward(input_ids) * self.embed_scale
class MitreSinusoidalPositionalEmbedding(nn.Module):
"""This module produces sinusoidal positional embeddings of any length."""
def __init__(self, num_positions: int, embedding_dim: int, padding_idx: Optional[int] = None):
super().__init__()
self.offset = 2
self.embedding_dim = embedding_dim
self.padding_idx = padding_idx
self.make_weights(num_positions + self.offset, embedding_dim, padding_idx)
def make_weights(self, num_embeddings: int, embedding_dim: int, padding_idx: Optional[int] = None):
emb_weights = self.get_embedding(num_embeddings, embedding_dim, padding_idx)
if hasattr(self, "weights"):
# in forward put the weights on the correct dtype and device of the param
emb_weights = emb_weights.to(dtype=self.weights.dtype, device=self.weights.device)
self.register_buffer("weights", emb_weights, persistent=False)
@staticmethod
def get_embedding(num_embeddings: int, embedding_dim: int, padding_idx: Optional[int] = None):
"""
Build sinusoidal embeddings.
This matches the implementation in tensor2tensor, but differs slightly from the description in Section 3.5 of
"Attention Is All You Need".
"""
half_dim = embedding_dim // 2
emb = math.log(10000) / (half_dim - 1)
emb = torch.exp(torch.arange(half_dim, dtype=torch.int64).float() * -emb)
emb = torch.arange(num_embeddings, dtype=torch.int64).float().unsqueeze(1) * emb.unsqueeze(0)
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1).view(num_embeddings, -1)
if embedding_dim % 2 == 1:
# zero pad
emb = torch.cat([emb, torch.zeros(num_embeddings, 1)], dim=1)
if padding_idx is not None:
emb[padding_idx, :] = 0
return emb.to(torch.get_default_dtype())
@torch.no_grad()
def forward(
self, input_ids: torch.Tensor = None, past_key_values_length: int = 0, src_length: int = 0
):
bsz, seq_len = input_ids.size()
# Create the position ids from the input token ids. Any padded tokens remain padded.
position_ids = create_position_ids_from_input_ids(input_ids, self.padding_idx, past_key_values_length).to(
input_ids.device
)
if past_key_values_length > 0 and src_length > 0:
position_ids = torch.where(position_ids == 1, position_ids, position_ids - src_length)
# expand embeddings if needed
max_pos = self.padding_idx + 1 + seq_len + past_key_values_length
if max_pos > self.weights.size(0):
self.make_weights(max_pos + self.offset, self.embedding_dim, self.padding_idx)
return self.weights.index_select(0, position_ids.view(-1)).view(bsz, seq_len, self.weights.shape[-1]).detach()
class MitreModel(MitrePreTrainedModel):
_tied_weights_keys = ["decoder.embed_tokens.weight"]
def __init__(self, config: MitreConfig):
super().__init__(config)
self.decoder = MitreDecoder(config)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.decoder.embed_tokens
def get_decoder(self):
return self.decoder
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
decoder_input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
registering_cache: dict = None,
) -> Union[Tuple[torch.Tensor], Seq2SeqModelOutput]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
decoder_outputs = self.decoder(
input_ids=input_ids,
decoder_input_ids=decoder_input_ids,
attention_mask=attention_mask,
past_key_values=past_key_values,
use_cache=use_cache,
output_hidden_states=output_hidden_states,
registering_cache=registering_cache
)
model_output = Seq2SeqModelOutput(
last_hidden_state=decoder_outputs.last_hidden_state,
past_key_values=decoder_outputs.past_key_values,
decoder_hidden_states=decoder_outputs.hidden_states,
decoder_attentions=decoder_outputs.attentions,
)
model_output.registering_cache = decoder_outputs.registering_cache
return model_output
class MitreForConditionalGeneration(MitrePreTrainedModel, GenerationMixin):
base_model_prefix = "model"
_tied_weights_keys = ["decoder.embed_tokens.weight", "lm_head.weight"]
def __init__(self, config: MitreConfig):
super().__init__(config)
self.model = MitreModel(config)
self.lm_head = nn.Linear(config.d_model, self.model.decoder.embed_tokens.num_embeddings, bias=False)
# Initialize weights and apply final processing
self.post_init()
def get_decoder(self):
return self.model.get_decoder()
def get_output_embeddings(self):
return self.lm_head
def set_output_embeddings(self, new_embeddings):
self.lm_head = new_embeddings
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
decoder_input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
registering_cache: dict = None,
) -> Union[Tuple[torch.Tensor], Seq2SeqLMOutput]:
outputs = self.model(
input_ids=input_ids,
decoder_input_ids=decoder_input_ids,
attention_mask=attention_mask,
past_key_values=past_key_values,
use_cache=use_cache,
output_hidden_states=output_hidden_states,
registering_cache=registering_cache,
)
lm_logits = self.lm_head(outputs[0])
if labels is not None:
raise NotImplementedError("Please implement your loss function here.")
model_output = Seq2SeqLMOutput(
loss=None,
logits=lm_logits,
past_key_values=outputs.past_key_values,
decoder_hidden_states=outputs.decoder_hidden_states,
decoder_attentions=outputs.decoder_attentions,
)
model_output.registering_cache = outputs.registering_cache
return model_output
@staticmethod
def _reorder_cache(past_key_values, beam_idx):
reordered_past = ()
for layer_past in past_key_values:
reordered_past += (
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
)
return reordered_past
@staticmethod
def _reorder_register_cache(t, beam_idx):
""" a costumized reorder method """
return t.index_select(dim=0, index=beam_idx.to(t.device))
@staticmethod
def _expand_inputs_for_generation(
input_ids: Optional[torch.LongTensor] = None,
beam_size: int = 1,
) -> torch.LongTensor:
"""
Expands input_ids from [batch_size, len(tokens)] to [batch_size * expand_size, , len(tokens)]
This is simplified from 'transformers.generation.utils.GenerationMixin._expand_inputs_for_generation'
"""
if beam_size == 1:
return input_ids
return input_ids.repeat_interleave(beam_size, dim=0)
def generate(self,
input_ids: Optional[torch.Tensor] = None,
generation_config: Optional[GenerationConfig] = None,
**kwargs: Dict
):
"""
Inference with beam search.
This code is an improved version of transformers.generation.utils.GenerationMixin.generate.
There are two main improvements:
1. 'soft early_stop' in beam search.
a) problem in the vanilla version.
In multilingual translation models such as NLLB and M2M, the vanilla early stop in BeamSearchScorer
(the official implementation by HuggingFace) marks ended sequences with pad(1). However, these ended
sequences are still fed into the model, leading to significant memory waste.
b) our improvement.
We implemented a "soft early stop" to address this issue. Instead of modifying BeamSearchScorer
(to maintain code flexibility), we remove ended sequences from the input. Since this changes the
shape of the output hidden states, we insert placeholders to maintain compatibility with
BeamSearchScorer's state shapes.
Based on our tests, this improvement reduces memory usage by half.
2. mask reusing.
a) problem:
Registers require attention masks at each step.
A sequence may consist of four parts: padding, source tokens, registers, and target tokens.
During training, we mask all tokens before registers for target token generation. During generation,
we cannot allow target tokens to "see" padding tokens, requiring masks at every step.
This leads to computational inefficiency.
b) our improvement.
First, we turncate the source tokens and their representations to reduce cost.
Second, for source tokens acting as placeholders, we modified the mask generation logic compared to
our Fairseq implementation.
Third, to avoid regenerating masks at each step, we cache the mask in 'registering_cache', where cached
mask is managed like the key-value cache in beam search. Then, At every step, we add a column of zeros
to maintain alignment.
"""
if generation_config != None:
assert type(generation_config) is GenerationConfig
self.generation_config = generation_config
self.generation_config.update(**kwargs)
generation_config = self.generation_config
batch_size = input_ids.shape[0]
beam_size = generation_config.num_beams
device = input_ids.device
max_cache_length = generation_config.max_length
eos_token_id = torch.Tensor([generation_config.eos_token_id])
# initial the target tokens
decoder_input_ids = torch.full(
(batch_size, 1),
self.generation_config.decoder_start_token_id,
dtype=input_ids.dtype,
device=device
)
beam_scorer = BeamSearchScorer(
batch_size=batch_size,
num_beams=beam_size,
device=device,
length_penalty=self.generation_config.length_penalty,
do_early_stopping=self.generation_config.early_stopping,
num_beam_hyps_to_keep=self.generation_config.num_return_sequences,
max_length=max_cache_length,
)
input_ids = self._expand_inputs_for_generation(input_ids, beam_size)
decoder_input_ids = self._expand_inputs_for_generation(decoder_input_ids, beam_size)
cur_len = decoder_input_ids.shape[1]
this_peer_finished = False
past_key_values = None
registering_cache= None
attention_mask = None
# done_mask shows the ended sequences.
# (~done_mask) shows the running sequences.
done_mask = None
# we follow the style of M2M and NLLB
# so we simplify the initialization of thoes two processors.
logits_processor = LogitsProcessorList()
stopping_criteria = StoppingCriteriaList()
beam_scores = torch.zeros((batch_size, beam_size), dtype=torch.float, device=input_ids.device)
beam_scores[:, 1:] = -1e9
beam_scores = beam_scores.view((batch_size * beam_size,))
while not this_peer_finished:
if past_key_values is not None:
decoder_input_ids_for_generation = decoder_input_ids[:, -1:]
attention_mask = registering_cache["attention_mask"]
# Get the mask when the first time using kv cache.
# After it, we can simply repeat 0. (the last column of mask) to get the next mask.
# As a result, we avoid generate the mask from scratch in kv cache and save memory.
if attention_mask is not None:
attention_mask = torch.cat((attention_mask, attention_mask[..., -1:]), dim=-1)
else:
decoder_input_ids_for_generation = decoder_input_ids
outputs = self(
input_ids,
decoder_input_ids_for_generation,
attention_mask=attention_mask,
past_key_values=past_key_values,
use_cache=True,
registering_cache=registering_cache
)
del input_ids
input_ids = None
past_key_values = outputs.past_key_values
registering_cache = outputs.registering_cache
next_token_logits = outputs.logits[:, -1, :].clone().float()
del outputs
next_token_logits = next_token_logits.to(device)
next_token_scores = nn.functional.log_softmax(
next_token_logits, dim=-1
) # (batch_size * num_beams, vocab_size)
next_token_scores_processed = logits_processor(decoder_input_ids, next_token_scores)
# if any sequence is ended, we have to keep the shape of Scorer's states.
# Details are described in the head of this function.
if done_mask is not None:
if done_mask.any():
# the placeholder of scores is '0.'
restored_tensor = torch.zeros(
(batch_size * beam_size, next_token_scores_processed.shape[1]),
dtype=next_token_scores_processed.dtype,
device=next_token_scores_processed.device
)
restored_tensor[~done_mask] = next_token_scores_processed
next_token_scores_processed = restored_tensor
# the placeholder of tokens is 'pad_token_id'
restored_tokens = torch.full(
(batch_size * beam_size, decoder_input_ids.shape[1]),
self.generation_config.pad_token_id,
dtype=decoder_input_ids.dtype,
device=device
)
restored_tokens[~done_mask] = decoder_input_ids
decoder_input_ids = restored_tokens
next_token_scores = next_token_scores_processed + beam_scores[:, None].expand_as(
next_token_scores_processed
)
# reshape for beam search
vocab_size = next_token_scores.shape[-1]
next_token_scores = next_token_scores.view(batch_size, beam_size * vocab_size)
# Beam token selection: pick 1 + eos_token_id.shape[0] next tokens for each beam so we have at least 1
# non eos token per beam.
n_eos_tokens = eos_token_id.shape[0] if eos_token_id is not None else 0
n_tokens_to_keep = max(2, 1 + n_eos_tokens) * beam_size
next_token_scores, next_tokens = torch.topk(
next_token_scores, n_tokens_to_keep, dim=1, largest=True, sorted=True
)
next_indices = torch.div(next_tokens, vocab_size, rounding_mode="floor")
next_tokens = next_tokens % vocab_size
beam_outputs = beam_scorer.process(
decoder_input_ids,
next_token_scores,
next_tokens,
next_indices,
pad_token_id=generation_config.pad_token_id,
eos_token_id=generation_config.eos_token_id,
decoder_prompt_len=1,
)
beam_scores = beam_outputs["next_beam_scores"]
beam_next_tokens = beam_outputs["next_beam_tokens"]
beam_idx = beam_outputs["next_beam_indices"]
# 'last_done_mask' is used for reordering cache
# details are described in the next code block
if done_mask is not None:
last_done_mask = done_mask
# get the newest status of sequences.
# then, filter the beam_idx
done_mask = beam_scorer._done.clone().view(-1)
done_mask = self._expand_inputs_for_generation(done_mask, beam_size)
beam_idx = beam_idx[~done_mask]
decoder_input_ids = torch.cat([decoder_input_ids[beam_idx, :], beam_next_tokens[~done_mask].unsqueeze(-1)], dim=-1)
# different from processing tokens, caches' order is decided by 'tokens', 'done_mask' and
# 'beam_idx', simultaneously.
if decoder_input_ids_for_generation.shape[0] < beam_next_tokens.shape[0]:
# Take carefule! If the running sequences' num is small than the num of input sequences,
# it means the Scorer decides to end it, but the cache still follows the last status.
# Therefore, we should employ the last done mask rather than newest done mask.
if (~done_mask).sum() < decoder_input_ids_for_generation.shape[0]:
count_mask = last_done_mask
else:
count_mask = done_mask
# For biasing the beam_idx
# Example:
# done_mask with beam size of 2: [f, f, t, t, f, f]
# beam_idx: [0, 0, 2, 2, 4, 5]
# reorder_idx: [0-0, 0-0, 4-2, 5-2]
prefix_sum = torch.cat([
torch.zeros_like(count_mask[:1], dtype=torch.long),
torch.cumsum(count_mask.long(), dim=0)
], dim=0)
reorder_idx = beam_idx - prefix_sum[beam_idx]
not_done = ~done_mask[beam_idx]
reorder_idx = reorder_idx[not_done]
else:
reorder_idx = beam_idx
past_key_values = self._reorder_cache(past_key_values, reorder_idx)
registering_cache["register_nums"] = self._reorder_register_cache(registering_cache["register_nums"], reorder_idx)
if registering_cache["attention_mask"] is not None:
registering_cache["attention_mask"] = self._reorder_register_cache(registering_cache["attention_mask"], reorder_idx)
cur_len = cur_len + 1
if beam_scorer.is_done:
this_peer_finished = True
sequence_outputs = beam_scorer.finalize(
decoder_input_ids,
beam_scores,
next_tokens,
next_indices,
pad_token_id=generation_config.pad_token_id,
eos_token_id=eos_token_id,
max_length=stopping_criteria.max_length,
decoder_prompt_len=1,
)
return sequence_outputs["sequences"]
MitreForConditionalGeneration.register_for_auto_class("AutoModel") |