myml
commited on
First model version
Browse files- config.json +72 -0
- eval_results.txt +3 -0
- main.py +33 -0
- model_args.json +1 -0
- pytorch_model.bin +3 -0
- special_tokens_map.json +7 -0
- tokenizer.json +0 -0
- tokenizer_config.json +13 -0
- training_args.bin +3 -0
- vocab.txt +0 -0
config.json
ADDED
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "bert-base-chinese",
|
3 |
+
"architectures": [
|
4 |
+
"BertForSequenceClassification"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"classifier_dropout": null,
|
8 |
+
"directionality": "bidi",
|
9 |
+
"hidden_act": "gelu",
|
10 |
+
"hidden_dropout_prob": 0.1,
|
11 |
+
"hidden_size": 768,
|
12 |
+
"id2label": {
|
13 |
+
"0": "LABEL_0",
|
14 |
+
"1": "LABEL_1",
|
15 |
+
"2": "LABEL_2",
|
16 |
+
"3": "LABEL_3",
|
17 |
+
"4": "LABEL_4",
|
18 |
+
"5": "LABEL_5",
|
19 |
+
"6": "LABEL_6",
|
20 |
+
"7": "LABEL_7",
|
21 |
+
"8": "LABEL_8",
|
22 |
+
"9": "LABEL_9",
|
23 |
+
"10": "LABEL_10",
|
24 |
+
"11": "LABEL_11",
|
25 |
+
"12": "LABEL_12",
|
26 |
+
"13": "LABEL_13",
|
27 |
+
"14": "LABEL_14",
|
28 |
+
"15": "LABEL_15",
|
29 |
+
"16": "LABEL_16",
|
30 |
+
"17": "LABEL_17"
|
31 |
+
},
|
32 |
+
"initializer_range": 0.02,
|
33 |
+
"intermediate_size": 3072,
|
34 |
+
"label2id": {
|
35 |
+
"LABEL_0": 0,
|
36 |
+
"LABEL_1": 1,
|
37 |
+
"LABEL_10": 10,
|
38 |
+
"LABEL_11": 11,
|
39 |
+
"LABEL_12": 12,
|
40 |
+
"LABEL_13": 13,
|
41 |
+
"LABEL_14": 14,
|
42 |
+
"LABEL_15": 15,
|
43 |
+
"LABEL_16": 16,
|
44 |
+
"LABEL_17": 17,
|
45 |
+
"LABEL_2": 2,
|
46 |
+
"LABEL_3": 3,
|
47 |
+
"LABEL_4": 4,
|
48 |
+
"LABEL_5": 5,
|
49 |
+
"LABEL_6": 6,
|
50 |
+
"LABEL_7": 7,
|
51 |
+
"LABEL_8": 8,
|
52 |
+
"LABEL_9": 9
|
53 |
+
},
|
54 |
+
"layer_norm_eps": 1e-12,
|
55 |
+
"max_position_embeddings": 512,
|
56 |
+
"model_type": "bert",
|
57 |
+
"num_attention_heads": 12,
|
58 |
+
"num_hidden_layers": 12,
|
59 |
+
"pad_token_id": 0,
|
60 |
+
"pooler_fc_size": 768,
|
61 |
+
"pooler_num_attention_heads": 12,
|
62 |
+
"pooler_num_fc_layers": 3,
|
63 |
+
"pooler_size_per_head": 128,
|
64 |
+
"pooler_type": "first_token_transform",
|
65 |
+
"position_embedding_type": "absolute",
|
66 |
+
"problem_type": "single_label_classification",
|
67 |
+
"torch_dtype": "float32",
|
68 |
+
"transformers_version": "4.27.1",
|
69 |
+
"type_vocab_size": 2,
|
70 |
+
"use_cache": true,
|
71 |
+
"vocab_size": 21128
|
72 |
+
}
|
eval_results.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
acc = 0.89
|
2 |
+
eval_loss = 0.41998069381713865
|
3 |
+
mcc = 0.8806300444725128
|
main.py
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
|
3 |
+
# read dataset
|
4 |
+
df = pd.read_csv('toutiao_cat_data.txt',
|
5 |
+
sep='_!_', lineterminator='\n',
|
6 |
+
encoding='utf8',
|
7 |
+
names=["id", "type", "type_text", "text", "keywords"])
|
8 |
+
df = df[["text", "type"]]
|
9 |
+
df["type"] = df["type"] - 100
|
10 |
+
|
11 |
+
# split dataset
|
12 |
+
df = df.sample(frac=1)
|
13 |
+
train_df, test_df = df[:-1000], df[-1000:]
|
14 |
+
|
15 |
+
# create model
|
16 |
+
from simpletransformers.classification import ClassificationModel
|
17 |
+
model = ClassificationModel(
|
18 |
+
"bert",
|
19 |
+
"bert-base-chinese",
|
20 |
+
num_labels=18,
|
21 |
+
args={"reprocess_input_data": True, "overwrite_output_dir": True},
|
22 |
+
)
|
23 |
+
|
24 |
+
# train
|
25 |
+
model.train_model(train_df)
|
26 |
+
|
27 |
+
# eval
|
28 |
+
import sklearn
|
29 |
+
result = model.eval_model(test_df, acc=sklearn.metrics.accuracy_score)
|
30 |
+
result[0]
|
31 |
+
|
32 |
+
# predict
|
33 |
+
model.predict(["M2处理器IPad mini7值得期待吗?"])
|
model_args.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"adafactor_beta1": null, "adafactor_clip_threshold": 1.0, "adafactor_decay_rate": -0.8, "adafactor_eps": [1e-30, 0.001], "adafactor_relative_step": true, "adafactor_scale_parameter": true, "adafactor_warmup_init": true, "adam_betas": [0.9, 0.999], "adam_epsilon": 1e-08, "best_model_dir": "outputs/best_model", "cache_dir": "cache_dir/", "config": {}, "cosine_schedule_num_cycles": 0.5, "custom_layer_parameters": [], "custom_parameter_groups": [], "dataloader_num_workers": 0, "do_lower_case": false, "dynamic_quantize": false, "early_stopping_consider_epochs": false, "early_stopping_delta": 0, "early_stopping_metric": "eval_loss", "early_stopping_metric_minimize": true, "early_stopping_patience": 3, "encoding": null, "eval_batch_size": 8, "evaluate_during_training": false, "evaluate_during_training_silent": true, "evaluate_during_training_steps": 2000, "evaluate_during_training_verbose": false, "evaluate_each_epoch": true, "fp16": true, "gradient_accumulation_steps": 1, "learning_rate": 4e-05, "local_rank": -1, "logging_steps": 50, "loss_type": null, "loss_args": {}, "manual_seed": null, "max_grad_norm": 1.0, "max_seq_length": 128, "model_name": "bert-base-chinese", "model_type": "bert", "multiprocessing_chunksize": -1, "n_gpu": 1, "no_cache": false, "no_save": false, "not_saved_args": [], "num_train_epochs": 1, "optimizer": "AdamW", "output_dir": "outputs/", "overwrite_output_dir": true, "polynomial_decay_schedule_lr_end": 1e-07, "polynomial_decay_schedule_power": 1.0, "process_count": 6, "quantized_model": false, "reprocess_input_data": true, "save_best_model": true, "save_eval_checkpoints": true, "save_model_every_epoch": true, "save_optimizer_and_scheduler": true, "save_steps": 2000, "scheduler": "linear_schedule_with_warmup", "silent": false, "skip_special_tokens": true, "tensorboard_dir": null, "thread_count": null, "tokenizer_name": "bert-base-chinese", "tokenizer_type": null, "train_batch_size": 8, "train_custom_parameters_only": false, "use_cached_eval_features": false, "use_early_stopping": false, "use_hf_datasets": false, "use_multiprocessing": true, "use_multiprocessing_for_evaluation": true, "wandb_kwargs": {}, "wandb_project": null, "warmup_ratio": 0.06, "warmup_steps": 2863, "weight_decay": 0.0, "model_class": "ClassificationModel", "labels_list": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17], "labels_map": {}, "lazy_delimiter": "\t", "lazy_labels_column": 1, "lazy_loading": false, "lazy_loading_start_line": 1, "lazy_text_a_column": null, "lazy_text_b_column": null, "lazy_text_column": 0, "onnx": false, "regression": false, "sliding_window": false, "special_tokens_list": [], "stride": 0.8, "tie_value": 1}
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:59b45bf5c7979172fc5b8e220b8704497e46be1b56c9d8e4737c4d34a659d19f
|
3 |
+
size 409198773
|
special_tokens_map.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": "[CLS]",
|
3 |
+
"mask_token": "[MASK]",
|
4 |
+
"pad_token": "[PAD]",
|
5 |
+
"sep_token": "[SEP]",
|
6 |
+
"unk_token": "[UNK]"
|
7 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": "[CLS]",
|
3 |
+
"do_lower_case": false,
|
4 |
+
"mask_token": "[MASK]",
|
5 |
+
"model_max_length": 512,
|
6 |
+
"pad_token": "[PAD]",
|
7 |
+
"sep_token": "[SEP]",
|
8 |
+
"special_tokens_map_file": null,
|
9 |
+
"strip_accents": null,
|
10 |
+
"tokenize_chinese_chars": true,
|
11 |
+
"tokenizer_class": "BertTokenizer",
|
12 |
+
"unk_token": "[UNK]"
|
13 |
+
}
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0729c4ac6a0769d02a19e8d48cb666dd0a3ebad4c5d9f93b3b5798cdc7c00a2b
|
3 |
+
size 3259
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|