--- library_name: transformers license: cc-by-nc-sa-4.0 base_model: microsoft/layoutlmv3-base tags: - generated_from_trainer datasets: - layoutlmv3 metrics: - precision - recall - f1 - accuracy model-index: - name: test results: - task: name: Token Classification type: token-classification dataset: name: layoutlmv3 type: layoutlmv3 config: InvoiceExtraction split: test args: InvoiceExtraction metrics: - name: Precision type: precision value: 0.9583333333333334 - name: Recall type: recall value: 0.9663865546218487 - name: F1 type: f1 value: 0.9623430962343097 - name: Accuracy type: accuracy value: 0.9921787709497206 --- # test This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the layoutlmv3 dataset. It achieves the following results on the evaluation set: - Loss: 0.1046 - Precision: 0.9583 - Recall: 0.9664 - F1: 0.9623 - Accuracy: 0.9922 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - training_steps: 1000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-------:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.3514 | 100 | 0.5502 | 0.7261 | 0.7017 | 0.7137 | 0.9006 | | No log | 2.7027 | 200 | 0.1859 | 0.9034 | 0.9034 | 0.9034 | 0.9721 | | No log | 4.0541 | 300 | 0.1437 | 0.9333 | 0.9412 | 0.9372 | 0.9844 | | No log | 5.4054 | 400 | 0.1351 | 0.9256 | 0.9412 | 0.9333 | 0.9844 | | 0.332 | 6.7568 | 500 | 0.1183 | 0.9380 | 0.9538 | 0.9458 | 0.9888 | | 0.332 | 8.1081 | 600 | 0.1137 | 0.9502 | 0.9622 | 0.9562 | 0.9911 | | 0.332 | 9.4595 | 700 | 0.1188 | 0.9502 | 0.9622 | 0.9562 | 0.9899 | | 0.332 | 10.8108 | 800 | 0.1107 | 0.9583 | 0.9664 | 0.9623 | 0.9922 | | 0.332 | 12.1622 | 900 | 0.1081 | 0.9583 | 0.9664 | 0.9623 | 0.9922 | | 0.0141 | 13.5135 | 1000 | 0.1046 | 0.9583 | 0.9664 | 0.9623 | 0.9922 | ### Framework versions - Transformers 4.47.0.dev0 - Pytorch 2.5.1+cu121 - Datasets 3.1.0 - Tokenizers 0.20.3