MiniMonkey / internvl_chat.py
mx262's picture
Upload internvl_chat.py
59a5edb verified
raw
history blame
24.4 kB
import torch
from transformers import AutoTokenizer, AutoConfig, AutoModel, CLIPImageProcessor
import warnings
from PIL import Image
from .base import BaseModel
from ..smp import *
from ..dataset import DATASET_TYPE
import pandas as pd
import string
import torch.distributed as dist
import torchvision.transforms as T
import transformers
from torchvision.transforms.functional import InterpolationMode
import re
IMAGENET_MEAN = (0.485, 0.456, 0.406)
IMAGENET_STD = (0.229, 0.224, 0.225)
def build_transform(input_size):
MEAN, STD = IMAGENET_MEAN, IMAGENET_STD
transform = T.Compose([
T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img),
T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC),
T.ToTensor(),
T.Normalize(mean=MEAN, std=STD)
])
return transform
def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size):
best_ratio_diff = float('inf')
best_ratio = (1, 1)
area = width * height
for ratio in target_ratios:
target_aspect_ratio = ratio[0] / ratio[1]
ratio_diff = abs(aspect_ratio - target_aspect_ratio)
if ratio_diff < best_ratio_diff:
best_ratio_diff = ratio_diff
best_ratio = ratio
elif ratio_diff == best_ratio_diff:
if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]:
best_ratio = ratio
return best_ratio
def dynamic_preprocess(image, min_num=5, max_num=6, image_size=448, use_thumbnail=False):
orig_width, orig_height = image.size
aspect_ratio = orig_width / orig_height
# calculate the existing image aspect ratio
target_ratios = set(
(i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if
i * j <= max_num and i * j >= min_num)
target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])
# find the closest aspect ratio to the target
target_aspect_ratio = find_closest_aspect_ratio(
aspect_ratio, target_ratios, orig_width, orig_height, image_size)
# calculate the target width and height
target_width = image_size * target_aspect_ratio[0]
target_height = image_size * target_aspect_ratio[1]
blocks = target_aspect_ratio[0] * target_aspect_ratio[1]
# resize the image
resized_img = image.resize((target_width, target_height))
processed_images = []
for i in range(blocks):
box = (
(i % (target_width // image_size)) * image_size,
(i // (target_width // image_size)) * image_size,
((i % (target_width // image_size)) + 1) * image_size,
((i // (target_width // image_size)) + 1) * image_size
)
# split the image
split_img = resized_img.crop(box)
processed_images.append(split_img)
assert len(processed_images) == blocks
if use_thumbnail and len(processed_images) != 1:
thumbnail_img = image.resize((image_size, image_size))
processed_images.append(thumbnail_img)
return processed_images, target_aspect_ratio
def dynamic_preprocess2(image, min_num=1, max_num=6, image_size=448, use_thumbnail=False, prior_aspect_ratio=None):
orig_width, orig_height = image.size
aspect_ratio = orig_width / orig_height
# calculate the existing image aspect ratio
target_ratios = set(
(i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if
i * j <= max_num and i * j >= min_num)
target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])
new_target_ratios = []
if prior_aspect_ratio is not None:
for i in target_ratios:
if prior_aspect_ratio[0]%i[0] !=0 or prior_aspect_ratio[1]%i[1] !=0:
new_target_ratios.append(i)
else:
continue
# find the closest aspect ratio to the target
target_aspect_ratio = find_closest_aspect_ratio(
aspect_ratio, new_target_ratios, orig_width, orig_height, image_size)
# calculate the target width and height
target_width = image_size * target_aspect_ratio[0]
target_height = image_size * target_aspect_ratio[1]
blocks = target_aspect_ratio[0] * target_aspect_ratio[1]
# resize the image
resized_img = image.resize((target_width, target_height))
processed_images = []
for i in range(blocks):
box = (
(i % (target_width // image_size)) * image_size,
(i // (target_width // image_size)) * image_size,
((i % (target_width // image_size)) + 1) * image_size,
((i // (target_width // image_size)) + 1) * image_size
)
# split the image
split_img = resized_img.crop(box)
processed_images.append(split_img)
assert len(processed_images) == blocks
if use_thumbnail and len(processed_images) != 1:
thumbnail_img = image.resize((image_size, image_size))
processed_images.append(thumbnail_img)
return processed_images
def load_image(image_file, input_size=448, min_num=1, max_num=6):
image = Image.open(image_file).convert('RGB')
transform = build_transform(input_size=input_size)
images, target_aspect_ratio = dynamic_preprocess(image, image_size=input_size, use_thumbnail=True, min_num=min_num, max_num=max_num)
pixel_values = [transform(image) for image in images]
pixel_values = torch.stack(pixel_values)
return pixel_values, target_aspect_ratio
def load_image2(image_file, input_size=448, target_aspect_ratio=(1,1), min_num=1, max_num=6):
image = Image.open(image_file).convert('RGB')
transform = build_transform(input_size=input_size)
images = dynamic_preprocess2(image, image_size=input_size, prior_aspect_ratio=target_aspect_ratio, use_thumbnail=True, min_num=min_num, max_num=max_num)
pixel_values = [transform(image) for image in images]
pixel_values = torch.stack(pixel_values)
return pixel_values
# This function is used to split InternVL2-Llama3-76B
def split_model(model_name):
import math
device_map = {}
num_gpus = torch.cuda.device_count()
rank, world_size = get_rank_and_world_size()
num_gpus = num_gpus // world_size
num_layers = {'InternVL2-8B': 32, 'InternVL2-26B': 48,
'InternVL2-40B': 60, 'InternVL2-Llama3-76B': 80}[model_name]
# Since the first GPU will be used for ViT, treat it as 0.8 GPU.
num_layers_per_gpu = math.ceil(num_layers / (num_gpus - 0.2))
num_layers_per_gpu = [num_layers_per_gpu] * num_gpus
num_layers_per_gpu[0] = math.ceil(num_layers_per_gpu[0] * 0.8)
layer_cnt = 0
for i, num_layer in enumerate(num_layers_per_gpu):
for j in range(num_layer):
device_map[f'language_model.model.layers.{layer_cnt}'] = rank + world_size * i
layer_cnt += 1
device_map['vision_model'] = rank
device_map['mlp1'] = rank
device_map['language_model.model.tok_embeddings'] = rank
device_map['language_model.model.embed_tokens'] = rank
device_map['language_model.output'] = rank
device_map['language_model.model.norm'] = rank
device_map['language_model.lm_head'] = rank
device_map[f'language_model.model.layers.{num_layers - 1}'] = rank
return device_map
class InternVLChat(BaseModel):
INSTALL_REQ = False
INTERLEAVE = True
def __init__(self, model_path='OpenGVLab/InternVL-Chat-V1-5', load_in_8bit=False, version='V1.0', **kwargs):
assert model_path is not None
assert version_cmp(transformers.__version__, '4.36.2', 'ge')
self.model_path = model_path
self.tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True, use_fast=False)
# Regular expression to match the pattern 'Image' followed by a number, e.g. Image1
self.pattern = r'Image(\d+)'
# Replacement pattern to insert a hyphen between 'Image' and the number, e.g. Image-1
self.replacement = r'Image-\1'
# Convert InternVL2 response to dataset format
# e.g. Image1 -> Image-1
# Regular expression to match the pattern 'Image-' followed by a number
self.reverse_pattern = r'Image-(\d+)'
# Replacement pattern to remove the hyphen (Image-1 -> Image1)
self.reverse_replacement = r'Image\1'
if listinstr(['InternVL2-Llama3-76B'], model_path):
device_map = split_model(model_path.split('/')[-1])
self.model = AutoModel.from_pretrained(
model_path,
torch_dtype=torch.bfloat16,
load_in_8bit=load_in_8bit,
trust_remote_code=True,
low_cpu_mem_usage=True,
device_map=device_map).eval()
else:
device = torch.cuda.current_device()
self.device = device
self.model = AutoModel.from_pretrained(
model_path,
torch_dtype=torch.bfloat16,
trust_remote_code=True,
load_in_8bit=load_in_8bit).eval()
if not load_in_8bit:
self.model = self.model.to(device)
self.image_size = self.model.config.vision_config.image_size
self.version = version
self.kwargs = kwargs
warnings.warn(f'Following kwargs received: {self.kwargs}, will use as generation config. ')
def use_custom_prompt(self, dataset):
if dataset is not None and listinstr(['MMDU'], dataset):
# For Multi-Turn we don't have custom prompt
return False
else:
return True
def build_multi_choice_prompt(self, line, dataset=None):
question = line['question']
hint = line['hint'] if ('hint' in line and not pd.isna(line['hint'])) else None
if hint is not None:
question = hint + '\n' + question
options = {
cand: line[cand]
for cand in string.ascii_uppercase
if cand in line and not pd.isna(line[cand])
}
for key, item in options.items():
question += f'\n{key}. {item}'
prompt = question
if len(options):
prompt += '\n请直接回答选项字母。' if cn_string(
prompt) else "\nAnswer with the option's letter from the given choices directly."
else:
prompt += '\n请直接回答问题。' if cn_string(prompt) else '\nAnswer the question directly.'
return prompt
def build_video_prompt(self, prompt, dataset=None, max_nframe=64):
for start in range(0, max_nframe, 8):
images_to_remove = ''.join([f'<image-{i}>' for i in range(start + 1, start + 9)])
prompt = prompt.replace(images_to_remove, '')
for i in range(max_nframe):
prompt = prompt.replace(f'<image-{i + 1}>', f'Frame{i + 1}')
if listinstr(['MMBench-Video'], dataset):
prompt = prompt.replace('\nAnswer:', '')
prompt += '\nAnswer the question using a single word or phrase.'
elif listinstr(['Video-MME'], dataset):
prompt = prompt.replace('\nAnswer:', '')
prompt += "\nAnswer with the option's letter from the given choices directly."
return prompt
def build_prompt(self, line, dataset=None):
assert self.use_custom_prompt(dataset)
assert dataset is None or isinstance(dataset, str)
tgt_path = self.dump_image(line, dataset)
if self.version == 'V1.1':
kwargs_default = dict(do_sample=False, max_new_tokens=1024, top_p=None, num_beams=5)
else:
kwargs_default = dict(do_sample=False, max_new_tokens=1024, top_p=None, num_beams=1)
self.kwargs = kwargs_default
if dataset is not None and listinstr(['MME'], dataset):
question = line['question']
prompt = question + ' Answer the question using a single word or phrase.'
elif dataset is not None and listinstr(['HallusionBench'], dataset):
question = line['question']
prompt = question + ' Please answer yes or no. Answer the question using a single word or phrase.'
elif dataset is not None and DATASET_TYPE(dataset) == 'MCQ':
prompt = self.build_multi_choice_prompt(line, dataset)
elif dataset is not None and DATASET_TYPE(dataset) == 'VQA':
if listinstr(['MathVista', 'MathVision'], dataset):
prompt = line['question']
elif listinstr(['LLaVABench'], dataset):
question = line['question']
prompt = question + '\nAnswer this question in detail.'
elif listinstr(['MMVet'], dataset):
prompt = line['question']
else:
question = line['question']
prompt = question + '\nAnswer the question using a single word or phrase.'
else:
prompt = line['question']
message = [dict(type='text', value=prompt)]
message.extend([dict(type='image', value=s) for s in tgt_path])
return message
def set_max_num(self, dataset):
if dataset is not None and listinstr(['ChartQA_TEST'], dataset):
self.max_num = 12
self.max_num2 = 3
elif dataset is not None and listinstr(['DocVQA_VAL', 'DocVQA_TEST', 'TextVQA_VAL'], dataset):
self.max_num = 23
self.max_num2 = 15
self.min_num = 14
self.min_num2 = 5
elif dataset is not None and listinstr(['InfoVQA_VAL', 'InfoVQA_TEST', 'SEEDBench_IMG'], dataset):
self.max_num = 23
self.max_num2 = 5
self.min_num = 15
self.min_num2 = 3
elif dataset is not None and listinstr(['OCRBench', 'POPE'], dataset):
self.max_num = 24
self.max_num2 = 8
self.min_num = 9
self.min_num2 = 5
elif dataset is not None and listinstr(['MME', 'HallusionBench'], dataset):
self.max_num = 11
self.max_num2 = 6
self.min_num = 4
self.min_num2 = 2
elif dataset is not None and listinstr(['AI2D_TEST'], dataset):
self.max_num = 12
self.max_num2 = 6
self.min_num = 5
self.min_num2 = 2
elif dataset is not None and listinstr(['CCBench'], dataset):
self.max_num = 24
self.max_num2 = 8
self.min_num = 9
self.min_num2 = 4
else:
self.max_num = 8
self.max_num2 = 4
self.min_num = 3
self.min_num2 = 1
def generate_v1_2(self, message, dataset=None):
self.INTERLEAVE = False
prompt, image_path = self.message_to_promptimg(message, dataset=dataset)
image = Image.open(image_path).convert('RGB')
image = image.resize((self.image_size, self.image_size))
image_processor = CLIPImageProcessor.from_pretrained(self.model_path)
pixel_values = image_processor(images=image, return_tensors='pt').pixel_values
pixel_values = pixel_values.to(torch.bfloat16).to(self.device)
with torch.no_grad():
response = self.model.chat(self.tokenizer, pixel_values=pixel_values,
question=prompt, generation_config=self.kwargs)
return response
def generate_v1_5(self, message, dataset=None):
image_num = len([x for x in message if x['type'] == 'image'])
prompt = '\n'.join([x['value'] for x in message if x['type'] == 'text'])
if listinstr(['Video'], dataset):
prompt = self.build_video_prompt(prompt, dataset)
if image_num > 1:
image_path = [x['value'] for x in message if x['type'] == 'image']
pixel_values_list = []
for file_name in image_path:
pixel_values_list.append(load_image(file_name, max_num=self.max_num).cuda().to(torch.bfloat16))
pixel_values = torch.cat(pixel_values_list, dim=0)
elif image_num == 1:
image_path = [x['value'] for x in message if x['type'] == 'image'][0]
pixel_values = load_image(image_path, max_num=self.max_num).cuda().to(torch.bfloat16)
else:
pixel_values = None
with torch.no_grad():
response = self.model.chat(
self.tokenizer,
pixel_values=pixel_values,
question=prompt,
generation_config=self.kwargs,
verbose=False)
return response
def generate_v2(self, message, dataset=None):
image_num = len([x for x in message if x['type'] == 'image'])
if image_num == 1:
prompt = '<image>\n' + '\n'.join([x['value'] for x in message if x['type'] == 'text'])
else:
prompt, image_idx = '', 1
for x in message:
if x['type'] == 'text':
prompt += x['value']
elif x['type'] == 'image':
prompt += f'<image-{image_idx}>'
image_idx += 1
prompt = ' '.join([f'<image-{i + 1}>: <image>' for i in range(image_num)]) + '\n' + prompt
if listinstr(['Video'], dataset):
prompt = self.build_video_prompt(prompt, dataset)
if image_num > 1:
image_path = [x['value'] for x in message if x['type'] == 'image']
num_patches_list = []
pixel_values_list = []
for image_idx, file_name in enumerate(image_path):
upscale_flag = image_idx == 0 and dataset is not None and listinstr(['MMMU_DEV_VAL'], dataset)
curr_pixel_values = load_image(
file_name, max_num=self.max_num, upscale=upscale_flag).cuda().to(torch.bfloat16)
curr_pixel_values, target_aspect_ratio = load_image(image_path, min_num=self.min_num, max_num=self.max_num)
curr_pixel_values = curr_pixel_values.cuda().to(torch.bfloat16)
curr_pixel_values2 = load_image2(image_path, target_aspect_ratio=target_aspect_ratio, min_num=self.min_num2, max_num=self.max_num2)
curr_pixel_values2 = curr_pixel_values2.cuda().to(torch.bfloat16)
curr_pixel_values = torch.cat((curr_pixel_values[:-1], curr_pixel_values2[:-1], curr_pixel_values[-1:]), 0)
num_patches_list.append(curr_pixel_values.size(0))
pixel_values_list.append(curr_pixel_values)
pixel_values = torch.cat(pixel_values_list, dim=0)
elif image_num == 1:
image_path = [x['value'] for x in message if x['type'] == 'image'][0]
upscale_flag = listinstr(['MMMU_DEV_VAL'], dataset)
pixel_values, target_aspect_ratio = load_image(image_path, min_num=self.min_num, max_num=self.max_num)
pixel_values = pixel_values.cuda().to(torch.bfloat16)
pixel_values2 = load_image2(image_path, target_aspect_ratio=target_aspect_ratio, min_num=self.min_num2, max_num=self.max_num2)
pixel_values2 = pixel_values2.cuda().to(torch.bfloat16)
pixel_values = torch.cat((pixel_values[:-1], pixel_values2[:-1], pixel_values[-1:]), 0)
num_patches_list = [pixel_values.size(0)]
else:
pixel_values = None
num_patches_list = []
with torch.no_grad():
response = self.model.chat(
self.tokenizer,
pixel_values=pixel_values,
target_aspect_ratio=(1,1),
num_patches_list=num_patches_list,
question=prompt,
generation_config=self.kwargs,
verbose=False
)
return response
def generate_inner(self, message, dataset=None):
self.set_max_num(dataset)
print(f'InternVL model version: {self.version}')
if self.version in ['V1.1', 'V1.2']:
return self.generate_v1_2(message, dataset)
elif self.version == 'V1.5':
return self.generate_v1_5(message, dataset)
elif self.version == 'V2.0':
return self.generate_v2(message, dataset)
else:
raise ValueError(f'Unsupported version: {self.version}')
def build_history(self, message):
# Global Variables
image_path = []
image_cnt = 0
def concat_tilist(tilist):
nonlocal image_cnt # Declare image_cnt as nonlocal to modify it
prompt = ''
for item in tilist:
# Substitute the pattern in the text
if item['type'] == 'text':
prompt += re.sub(self.pattern, self.replacement, item['value'])
elif item['type'] == 'image':
image_cnt += 1
prompt += '<image>\n'
image_path.append(item['value'])
return prompt
# Only previous messages
assert len(message) % 2 == 0
history = []
for i in range(len(message) // 2):
m1, m2 = message[2 * i], message[2 * i + 1]
assert m1['role'] == 'user' and m2['role'] == 'assistant'
history.append((concat_tilist(m1['content']), concat_tilist(m2['content'])))
return history, image_path, image_cnt
def chat_inner_v2(self, message, dataset=None):
image_cnt = 0
if len(message) > 1:
history, image_path, image_cnt = self.build_history(message[:-1])
else:
history, image_path, image_cnt = None, [], 1
current_msg = message[-1]
question = ''
# If message is just text in the conversation
if len(current_msg['content']) == 1 and current_msg['content'][0]['type'] == 'text':
question = current_msg['content'][0]['value']
question = re.sub(self.pattern, self.replacement, question) # Fix pattern as per InternVL
else:
for msg in current_msg['content']:
if msg['type'] == 'text':
question += re.sub(self.pattern, self.replacement, msg['value'])
elif msg['type'] == 'image':
image_cnt += 1
question += '<image>\n'
image_path.append(msg['value'])
if image_cnt > 1:
num_patches_list = []
pixel_values_list = []
for image_idx, file_name in enumerate(image_path):
upscale_flag = image_idx == 0 and dataset is not None and listinstr(['MMMU_DEV_VAL'], dataset)
curr_pixel_values = load_image(
file_name, max_num=self.max_num, upscale=upscale_flag).cuda().to(torch.bfloat16)
num_patches_list.append(curr_pixel_values.size(0))
pixel_values_list.append(curr_pixel_values)
pixel_values = torch.cat(pixel_values_list, dim=0)
elif image_cnt == 1:
upscale_flag = listinstr(['MMMU_DEV_VAL'], dataset)
pixel_values = load_image(
image_path, max_num=self.max_num, upscale=upscale_flag).cuda().to(torch.bfloat16)
num_patches_list = [pixel_values.size(0)]
else:
pixel_values = None
num_patches_list = []
response, history = self.model.chat(
self.tokenizer,
pixel_values=pixel_values,
target_aspect_ratio=target_aspect_ratio,
num_patches_list=num_patches_list,
question=question,
generation_config=self.kwargs,
history=history,
return_history=True
)
response = re.sub(self.reverse_pattern, self.reverse_replacement, response)
return response
def chat_inner(self, message, dataset=None):
self.set_max_num(dataset)
if self.version in ['V1.1', 'V1.2']:
raise ValueError(f'Unsupported version for Multi-Turn: {self.version}')
elif self.version == 'V1.5':
raise ValueError(f'Unsupported version for Multi-Turn: {self.version}')
elif self.version == 'V2.0':
kwargs_default = dict(do_sample=False, max_new_tokens=512, top_p=None, num_beams=1)
self.kwargs = kwargs_default
return self.chat_inner_v2(message, dataset)
else:
raise ValueError(f'Unsupported version for Multi-Turn: {self.version}')