|
import torch |
|
from transformers import AutoTokenizer, AutoConfig, AutoModel, CLIPImageProcessor |
|
import warnings |
|
from PIL import Image |
|
from .base import BaseModel |
|
from ..smp import * |
|
from ..dataset import DATASET_TYPE |
|
import pandas as pd |
|
import string |
|
import torch.distributed as dist |
|
import torchvision.transforms as T |
|
import transformers |
|
|
|
from torchvision.transforms.functional import InterpolationMode |
|
import re |
|
|
|
|
|
IMAGENET_MEAN = (0.485, 0.456, 0.406) |
|
IMAGENET_STD = (0.229, 0.224, 0.225) |
|
|
|
|
|
def build_transform(input_size): |
|
MEAN, STD = IMAGENET_MEAN, IMAGENET_STD |
|
transform = T.Compose([ |
|
T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img), |
|
T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC), |
|
T.ToTensor(), |
|
T.Normalize(mean=MEAN, std=STD) |
|
]) |
|
return transform |
|
|
|
|
|
def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size): |
|
best_ratio_diff = float('inf') |
|
best_ratio = (1, 1) |
|
area = width * height |
|
for ratio in target_ratios: |
|
target_aspect_ratio = ratio[0] / ratio[1] |
|
ratio_diff = abs(aspect_ratio - target_aspect_ratio) |
|
if ratio_diff < best_ratio_diff: |
|
best_ratio_diff = ratio_diff |
|
best_ratio = ratio |
|
elif ratio_diff == best_ratio_diff: |
|
if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]: |
|
best_ratio = ratio |
|
return best_ratio |
|
|
|
|
|
def dynamic_preprocess(image, min_num=5, max_num=6, image_size=448, use_thumbnail=False): |
|
orig_width, orig_height = image.size |
|
aspect_ratio = orig_width / orig_height |
|
|
|
|
|
target_ratios = set( |
|
(i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if |
|
i * j <= max_num and i * j >= min_num) |
|
target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1]) |
|
|
|
|
|
target_aspect_ratio = find_closest_aspect_ratio( |
|
aspect_ratio, target_ratios, orig_width, orig_height, image_size) |
|
|
|
|
|
target_width = image_size * target_aspect_ratio[0] |
|
target_height = image_size * target_aspect_ratio[1] |
|
blocks = target_aspect_ratio[0] * target_aspect_ratio[1] |
|
|
|
|
|
resized_img = image.resize((target_width, target_height)) |
|
processed_images = [] |
|
for i in range(blocks): |
|
box = ( |
|
(i % (target_width // image_size)) * image_size, |
|
(i // (target_width // image_size)) * image_size, |
|
((i % (target_width // image_size)) + 1) * image_size, |
|
((i // (target_width // image_size)) + 1) * image_size |
|
) |
|
|
|
split_img = resized_img.crop(box) |
|
processed_images.append(split_img) |
|
assert len(processed_images) == blocks |
|
if use_thumbnail and len(processed_images) != 1: |
|
thumbnail_img = image.resize((image_size, image_size)) |
|
processed_images.append(thumbnail_img) |
|
return processed_images, target_aspect_ratio |
|
|
|
def dynamic_preprocess2(image, min_num=1, max_num=6, image_size=448, use_thumbnail=False, prior_aspect_ratio=None): |
|
orig_width, orig_height = image.size |
|
aspect_ratio = orig_width / orig_height |
|
|
|
|
|
target_ratios = set( |
|
(i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if |
|
i * j <= max_num and i * j >= min_num) |
|
target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1]) |
|
|
|
new_target_ratios = [] |
|
if prior_aspect_ratio is not None: |
|
for i in target_ratios: |
|
if prior_aspect_ratio[0]%i[0] !=0 or prior_aspect_ratio[1]%i[1] !=0: |
|
new_target_ratios.append(i) |
|
else: |
|
continue |
|
|
|
target_aspect_ratio = find_closest_aspect_ratio( |
|
aspect_ratio, new_target_ratios, orig_width, orig_height, image_size) |
|
|
|
|
|
target_width = image_size * target_aspect_ratio[0] |
|
target_height = image_size * target_aspect_ratio[1] |
|
blocks = target_aspect_ratio[0] * target_aspect_ratio[1] |
|
|
|
|
|
resized_img = image.resize((target_width, target_height)) |
|
processed_images = [] |
|
for i in range(blocks): |
|
box = ( |
|
(i % (target_width // image_size)) * image_size, |
|
(i // (target_width // image_size)) * image_size, |
|
((i % (target_width // image_size)) + 1) * image_size, |
|
((i // (target_width // image_size)) + 1) * image_size |
|
) |
|
|
|
split_img = resized_img.crop(box) |
|
processed_images.append(split_img) |
|
assert len(processed_images) == blocks |
|
if use_thumbnail and len(processed_images) != 1: |
|
thumbnail_img = image.resize((image_size, image_size)) |
|
processed_images.append(thumbnail_img) |
|
return processed_images |
|
|
|
def load_image(image_file, input_size=448, min_num=1, max_num=6): |
|
image = Image.open(image_file).convert('RGB') |
|
transform = build_transform(input_size=input_size) |
|
images, target_aspect_ratio = dynamic_preprocess(image, image_size=input_size, use_thumbnail=True, min_num=min_num, max_num=max_num) |
|
pixel_values = [transform(image) for image in images] |
|
pixel_values = torch.stack(pixel_values) |
|
return pixel_values, target_aspect_ratio |
|
|
|
def load_image2(image_file, input_size=448, target_aspect_ratio=(1,1), min_num=1, max_num=6): |
|
image = Image.open(image_file).convert('RGB') |
|
transform = build_transform(input_size=input_size) |
|
images = dynamic_preprocess2(image, image_size=input_size, prior_aspect_ratio=target_aspect_ratio, use_thumbnail=True, min_num=min_num, max_num=max_num) |
|
pixel_values = [transform(image) for image in images] |
|
pixel_values = torch.stack(pixel_values) |
|
return pixel_values |
|
|
|
|
|
|
|
def split_model(model_name): |
|
import math |
|
device_map = {} |
|
num_gpus = torch.cuda.device_count() |
|
rank, world_size = get_rank_and_world_size() |
|
num_gpus = num_gpus // world_size |
|
|
|
num_layers = {'InternVL2-8B': 32, 'InternVL2-26B': 48, |
|
'InternVL2-40B': 60, 'InternVL2-Llama3-76B': 80}[model_name] |
|
|
|
num_layers_per_gpu = math.ceil(num_layers / (num_gpus - 0.2)) |
|
num_layers_per_gpu = [num_layers_per_gpu] * num_gpus |
|
num_layers_per_gpu[0] = math.ceil(num_layers_per_gpu[0] * 0.8) |
|
layer_cnt = 0 |
|
for i, num_layer in enumerate(num_layers_per_gpu): |
|
for j in range(num_layer): |
|
device_map[f'language_model.model.layers.{layer_cnt}'] = rank + world_size * i |
|
layer_cnt += 1 |
|
device_map['vision_model'] = rank |
|
device_map['mlp1'] = rank |
|
device_map['language_model.model.tok_embeddings'] = rank |
|
device_map['language_model.model.embed_tokens'] = rank |
|
device_map['language_model.output'] = rank |
|
device_map['language_model.model.norm'] = rank |
|
device_map['language_model.lm_head'] = rank |
|
device_map[f'language_model.model.layers.{num_layers - 1}'] = rank |
|
return device_map |
|
|
|
|
|
class InternVLChat(BaseModel): |
|
|
|
INSTALL_REQ = False |
|
INTERLEAVE = True |
|
|
|
def __init__(self, model_path='OpenGVLab/InternVL-Chat-V1-5', load_in_8bit=False, version='V1.0', **kwargs): |
|
assert model_path is not None |
|
assert version_cmp(transformers.__version__, '4.36.2', 'ge') |
|
|
|
self.model_path = model_path |
|
self.tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True, use_fast=False) |
|
|
|
|
|
self.pattern = r'Image(\d+)' |
|
|
|
self.replacement = r'Image-\1' |
|
|
|
|
|
|
|
|
|
|
|
self.reverse_pattern = r'Image-(\d+)' |
|
|
|
self.reverse_replacement = r'Image\1' |
|
|
|
if listinstr(['InternVL2-Llama3-76B'], model_path): |
|
device_map = split_model(model_path.split('/')[-1]) |
|
self.model = AutoModel.from_pretrained( |
|
model_path, |
|
torch_dtype=torch.bfloat16, |
|
load_in_8bit=load_in_8bit, |
|
trust_remote_code=True, |
|
low_cpu_mem_usage=True, |
|
device_map=device_map).eval() |
|
else: |
|
device = torch.cuda.current_device() |
|
self.device = device |
|
self.model = AutoModel.from_pretrained( |
|
model_path, |
|
torch_dtype=torch.bfloat16, |
|
trust_remote_code=True, |
|
load_in_8bit=load_in_8bit).eval() |
|
if not load_in_8bit: |
|
self.model = self.model.to(device) |
|
|
|
self.image_size = self.model.config.vision_config.image_size |
|
self.version = version |
|
self.kwargs = kwargs |
|
warnings.warn(f'Following kwargs received: {self.kwargs}, will use as generation config. ') |
|
|
|
def use_custom_prompt(self, dataset): |
|
|
|
if dataset is not None and listinstr(['MMDU'], dataset): |
|
|
|
return False |
|
else: |
|
return True |
|
|
|
def build_multi_choice_prompt(self, line, dataset=None): |
|
question = line['question'] |
|
hint = line['hint'] if ('hint' in line and not pd.isna(line['hint'])) else None |
|
if hint is not None: |
|
question = hint + '\n' + question |
|
|
|
options = { |
|
cand: line[cand] |
|
for cand in string.ascii_uppercase |
|
if cand in line and not pd.isna(line[cand]) |
|
} |
|
for key, item in options.items(): |
|
question += f'\n{key}. {item}' |
|
prompt = question |
|
|
|
if len(options): |
|
prompt += '\n请直接回答选项字母。' if cn_string( |
|
prompt) else "\nAnswer with the option's letter from the given choices directly." |
|
else: |
|
prompt += '\n请直接回答问题。' if cn_string(prompt) else '\nAnswer the question directly.' |
|
|
|
return prompt |
|
|
|
def build_video_prompt(self, prompt, dataset=None, max_nframe=64): |
|
for start in range(0, max_nframe, 8): |
|
images_to_remove = ''.join([f'<image-{i}>' for i in range(start + 1, start + 9)]) |
|
prompt = prompt.replace(images_to_remove, '') |
|
for i in range(max_nframe): |
|
prompt = prompt.replace(f'<image-{i + 1}>', f'Frame{i + 1}') |
|
if listinstr(['MMBench-Video'], dataset): |
|
prompt = prompt.replace('\nAnswer:', '') |
|
prompt += '\nAnswer the question using a single word or phrase.' |
|
elif listinstr(['Video-MME'], dataset): |
|
prompt = prompt.replace('\nAnswer:', '') |
|
prompt += "\nAnswer with the option's letter from the given choices directly." |
|
return prompt |
|
|
|
def build_prompt(self, line, dataset=None): |
|
assert self.use_custom_prompt(dataset) |
|
assert dataset is None or isinstance(dataset, str) |
|
tgt_path = self.dump_image(line, dataset) |
|
|
|
if self.version == 'V1.1': |
|
kwargs_default = dict(do_sample=False, max_new_tokens=1024, top_p=None, num_beams=5) |
|
else: |
|
kwargs_default = dict(do_sample=False, max_new_tokens=1024, top_p=None, num_beams=1) |
|
self.kwargs = kwargs_default |
|
|
|
if dataset is not None and listinstr(['MME'], dataset): |
|
question = line['question'] |
|
prompt = question + ' Answer the question using a single word or phrase.' |
|
elif dataset is not None and listinstr(['HallusionBench'], dataset): |
|
question = line['question'] |
|
prompt = question + ' Please answer yes or no. Answer the question using a single word or phrase.' |
|
elif dataset is not None and DATASET_TYPE(dataset) == 'MCQ': |
|
prompt = self.build_multi_choice_prompt(line, dataset) |
|
elif dataset is not None and DATASET_TYPE(dataset) == 'VQA': |
|
if listinstr(['MathVista', 'MathVision'], dataset): |
|
prompt = line['question'] |
|
elif listinstr(['LLaVABench'], dataset): |
|
question = line['question'] |
|
prompt = question + '\nAnswer this question in detail.' |
|
elif listinstr(['MMVet'], dataset): |
|
prompt = line['question'] |
|
else: |
|
question = line['question'] |
|
prompt = question + '\nAnswer the question using a single word or phrase.' |
|
else: |
|
prompt = line['question'] |
|
message = [dict(type='text', value=prompt)] |
|
message.extend([dict(type='image', value=s) for s in tgt_path]) |
|
return message |
|
|
|
def set_max_num(self, dataset): |
|
if dataset is not None and listinstr(['ChartQA_TEST'], dataset): |
|
self.max_num = 12 |
|
self.max_num2 = 3 |
|
elif dataset is not None and listinstr(['DocVQA_VAL', 'DocVQA_TEST', 'TextVQA_VAL'], dataset): |
|
self.max_num = 23 |
|
self.max_num2 = 15 |
|
self.min_num = 14 |
|
self.min_num2 = 5 |
|
elif dataset is not None and listinstr(['InfoVQA_VAL', 'InfoVQA_TEST', 'SEEDBench_IMG'], dataset): |
|
self.max_num = 23 |
|
self.max_num2 = 5 |
|
self.min_num = 15 |
|
self.min_num2 = 3 |
|
elif dataset is not None and listinstr(['OCRBench', 'POPE'], dataset): |
|
self.max_num = 24 |
|
self.max_num2 = 8 |
|
self.min_num = 9 |
|
self.min_num2 = 5 |
|
elif dataset is not None and listinstr(['MME', 'HallusionBench'], dataset): |
|
self.max_num = 11 |
|
self.max_num2 = 6 |
|
self.min_num = 4 |
|
self.min_num2 = 2 |
|
elif dataset is not None and listinstr(['AI2D_TEST'], dataset): |
|
self.max_num = 12 |
|
self.max_num2 = 6 |
|
self.min_num = 5 |
|
self.min_num2 = 2 |
|
elif dataset is not None and listinstr(['CCBench'], dataset): |
|
self.max_num = 24 |
|
self.max_num2 = 8 |
|
self.min_num = 9 |
|
self.min_num2 = 4 |
|
else: |
|
self.max_num = 8 |
|
self.max_num2 = 4 |
|
self.min_num = 3 |
|
self.min_num2 = 1 |
|
|
|
def generate_v1_2(self, message, dataset=None): |
|
self.INTERLEAVE = False |
|
prompt, image_path = self.message_to_promptimg(message, dataset=dataset) |
|
image = Image.open(image_path).convert('RGB') |
|
image = image.resize((self.image_size, self.image_size)) |
|
image_processor = CLIPImageProcessor.from_pretrained(self.model_path) |
|
pixel_values = image_processor(images=image, return_tensors='pt').pixel_values |
|
pixel_values = pixel_values.to(torch.bfloat16).to(self.device) |
|
with torch.no_grad(): |
|
response = self.model.chat(self.tokenizer, pixel_values=pixel_values, |
|
question=prompt, generation_config=self.kwargs) |
|
return response |
|
|
|
def generate_v1_5(self, message, dataset=None): |
|
image_num = len([x for x in message if x['type'] == 'image']) |
|
prompt = '\n'.join([x['value'] for x in message if x['type'] == 'text']) |
|
|
|
if listinstr(['Video'], dataset): |
|
prompt = self.build_video_prompt(prompt, dataset) |
|
|
|
if image_num > 1: |
|
image_path = [x['value'] for x in message if x['type'] == 'image'] |
|
pixel_values_list = [] |
|
for file_name in image_path: |
|
pixel_values_list.append(load_image(file_name, max_num=self.max_num).cuda().to(torch.bfloat16)) |
|
pixel_values = torch.cat(pixel_values_list, dim=0) |
|
elif image_num == 1: |
|
image_path = [x['value'] for x in message if x['type'] == 'image'][0] |
|
pixel_values = load_image(image_path, max_num=self.max_num).cuda().to(torch.bfloat16) |
|
else: |
|
pixel_values = None |
|
with torch.no_grad(): |
|
response = self.model.chat( |
|
self.tokenizer, |
|
pixel_values=pixel_values, |
|
question=prompt, |
|
generation_config=self.kwargs, |
|
verbose=False) |
|
return response |
|
|
|
def generate_v2(self, message, dataset=None): |
|
image_num = len([x for x in message if x['type'] == 'image']) |
|
if image_num == 1: |
|
prompt = '<image>\n' + '\n'.join([x['value'] for x in message if x['type'] == 'text']) |
|
else: |
|
prompt, image_idx = '', 1 |
|
for x in message: |
|
if x['type'] == 'text': |
|
prompt += x['value'] |
|
elif x['type'] == 'image': |
|
prompt += f'<image-{image_idx}>' |
|
image_idx += 1 |
|
prompt = ' '.join([f'<image-{i + 1}>: <image>' for i in range(image_num)]) + '\n' + prompt |
|
|
|
if listinstr(['Video'], dataset): |
|
prompt = self.build_video_prompt(prompt, dataset) |
|
|
|
if image_num > 1: |
|
image_path = [x['value'] for x in message if x['type'] == 'image'] |
|
num_patches_list = [] |
|
pixel_values_list = [] |
|
for image_idx, file_name in enumerate(image_path): |
|
upscale_flag = image_idx == 0 and dataset is not None and listinstr(['MMMU_DEV_VAL'], dataset) |
|
curr_pixel_values = load_image( |
|
file_name, max_num=self.max_num, upscale=upscale_flag).cuda().to(torch.bfloat16) |
|
|
|
curr_pixel_values, target_aspect_ratio = load_image(image_path, min_num=self.min_num, max_num=self.max_num) |
|
curr_pixel_values = curr_pixel_values.cuda().to(torch.bfloat16) |
|
curr_pixel_values2 = load_image2(image_path, target_aspect_ratio=target_aspect_ratio, min_num=self.min_num2, max_num=self.max_num2) |
|
curr_pixel_values2 = curr_pixel_values2.cuda().to(torch.bfloat16) |
|
curr_pixel_values = torch.cat((curr_pixel_values[:-1], curr_pixel_values2[:-1], curr_pixel_values[-1:]), 0) |
|
num_patches_list.append(curr_pixel_values.size(0)) |
|
pixel_values_list.append(curr_pixel_values) |
|
pixel_values = torch.cat(pixel_values_list, dim=0) |
|
elif image_num == 1: |
|
image_path = [x['value'] for x in message if x['type'] == 'image'][0] |
|
upscale_flag = listinstr(['MMMU_DEV_VAL'], dataset) |
|
pixel_values, target_aspect_ratio = load_image(image_path, min_num=self.min_num, max_num=self.max_num) |
|
pixel_values = pixel_values.cuda().to(torch.bfloat16) |
|
pixel_values2 = load_image2(image_path, target_aspect_ratio=target_aspect_ratio, min_num=self.min_num2, max_num=self.max_num2) |
|
pixel_values2 = pixel_values2.cuda().to(torch.bfloat16) |
|
pixel_values = torch.cat((pixel_values[:-1], pixel_values2[:-1], pixel_values[-1:]), 0) |
|
num_patches_list = [pixel_values.size(0)] |
|
else: |
|
pixel_values = None |
|
num_patches_list = [] |
|
|
|
with torch.no_grad(): |
|
response = self.model.chat( |
|
self.tokenizer, |
|
pixel_values=pixel_values, |
|
target_aspect_ratio=(1,1), |
|
num_patches_list=num_patches_list, |
|
question=prompt, |
|
generation_config=self.kwargs, |
|
verbose=False |
|
) |
|
return response |
|
|
|
def generate_inner(self, message, dataset=None): |
|
self.set_max_num(dataset) |
|
print(f'InternVL model version: {self.version}') |
|
if self.version in ['V1.1', 'V1.2']: |
|
return self.generate_v1_2(message, dataset) |
|
elif self.version == 'V1.5': |
|
return self.generate_v1_5(message, dataset) |
|
elif self.version == 'V2.0': |
|
return self.generate_v2(message, dataset) |
|
else: |
|
raise ValueError(f'Unsupported version: {self.version}') |
|
|
|
def build_history(self, message): |
|
|
|
image_path = [] |
|
image_cnt = 0 |
|
|
|
def concat_tilist(tilist): |
|
nonlocal image_cnt |
|
prompt = '' |
|
for item in tilist: |
|
|
|
if item['type'] == 'text': |
|
prompt += re.sub(self.pattern, self.replacement, item['value']) |
|
elif item['type'] == 'image': |
|
image_cnt += 1 |
|
prompt += '<image>\n' |
|
image_path.append(item['value']) |
|
return prompt |
|
|
|
|
|
assert len(message) % 2 == 0 |
|
history = [] |
|
for i in range(len(message) // 2): |
|
m1, m2 = message[2 * i], message[2 * i + 1] |
|
assert m1['role'] == 'user' and m2['role'] == 'assistant' |
|
history.append((concat_tilist(m1['content']), concat_tilist(m2['content']))) |
|
|
|
return history, image_path, image_cnt |
|
|
|
def chat_inner_v2(self, message, dataset=None): |
|
|
|
image_cnt = 0 |
|
if len(message) > 1: |
|
history, image_path, image_cnt = self.build_history(message[:-1]) |
|
else: |
|
history, image_path, image_cnt = None, [], 1 |
|
current_msg = message[-1] |
|
question = '' |
|
|
|
|
|
if len(current_msg['content']) == 1 and current_msg['content'][0]['type'] == 'text': |
|
question = current_msg['content'][0]['value'] |
|
question = re.sub(self.pattern, self.replacement, question) |
|
else: |
|
for msg in current_msg['content']: |
|
if msg['type'] == 'text': |
|
question += re.sub(self.pattern, self.replacement, msg['value']) |
|
elif msg['type'] == 'image': |
|
image_cnt += 1 |
|
question += '<image>\n' |
|
image_path.append(msg['value']) |
|
|
|
if image_cnt > 1: |
|
num_patches_list = [] |
|
pixel_values_list = [] |
|
for image_idx, file_name in enumerate(image_path): |
|
upscale_flag = image_idx == 0 and dataset is not None and listinstr(['MMMU_DEV_VAL'], dataset) |
|
curr_pixel_values = load_image( |
|
file_name, max_num=self.max_num, upscale=upscale_flag).cuda().to(torch.bfloat16) |
|
num_patches_list.append(curr_pixel_values.size(0)) |
|
pixel_values_list.append(curr_pixel_values) |
|
pixel_values = torch.cat(pixel_values_list, dim=0) |
|
elif image_cnt == 1: |
|
upscale_flag = listinstr(['MMMU_DEV_VAL'], dataset) |
|
pixel_values = load_image( |
|
image_path, max_num=self.max_num, upscale=upscale_flag).cuda().to(torch.bfloat16) |
|
num_patches_list = [pixel_values.size(0)] |
|
else: |
|
pixel_values = None |
|
num_patches_list = [] |
|
|
|
response, history = self.model.chat( |
|
self.tokenizer, |
|
pixel_values=pixel_values, |
|
target_aspect_ratio=target_aspect_ratio, |
|
num_patches_list=num_patches_list, |
|
question=question, |
|
generation_config=self.kwargs, |
|
history=history, |
|
return_history=True |
|
) |
|
|
|
response = re.sub(self.reverse_pattern, self.reverse_replacement, response) |
|
|
|
return response |
|
|
|
def chat_inner(self, message, dataset=None): |
|
self.set_max_num(dataset) |
|
|
|
if self.version in ['V1.1', 'V1.2']: |
|
raise ValueError(f'Unsupported version for Multi-Turn: {self.version}') |
|
elif self.version == 'V1.5': |
|
raise ValueError(f'Unsupported version for Multi-Turn: {self.version}') |
|
elif self.version == 'V2.0': |
|
kwargs_default = dict(do_sample=False, max_new_tokens=512, top_p=None, num_beams=1) |
|
self.kwargs = kwargs_default |
|
return self.chat_inner_v2(message, dataset) |
|
else: |
|
raise ValueError(f'Unsupported version for Multi-Turn: {self.version}') |