--- license: apache-2.0 base_model: google/mt5-large tags: - generated_from_trainer datasets: - mtc/span_absinth_with_articles_german_faithfulness_detection_dataset model-index: - name: google-mt5-large_MAX-CONTEXT-LEN-1024_MAX-GEN-LEN-256_span_absinth_faithfulness_multi_label_classification_bounded-quetzal-2024-07-15 results: [] --- [Visualize in Weights & Biases](https://wandb.ai/background-tool/span_absinth_evaluation/runs/0mq2kpk8) # google-mt5-large_MAX-CONTEXT-LEN-1024_MAX-GEN-LEN-256_span_absinth_faithfulness_multi_label_classification_bounded-quetzal-2024-07-15 This model is a fine-tuned version of [google/mt5-large](https://huggingface.co/google/mt5-large) on the mtc/span_absinth_with_articles_german_faithfulness_detection_dataset dataset. It achieves the following results on the evaluation set: - Loss: 0.1459 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 5.7665 | 0.1534 | 100 | 2.7347 | | 2.3656 | 0.3067 | 200 | 1.6610 | | 1.1422 | 0.4601 | 300 | 0.5634 | | 0.4894 | 0.6135 | 400 | 0.2760 | | 0.3222 | 0.7669 | 500 | 0.2368 | | 0.3563 | 0.9202 | 600 | 0.1922 | | 0.2274 | 1.0736 | 700 | 0.1777 | | 0.1465 | 1.2270 | 800 | 0.1763 | | 0.1499 | 1.3804 | 900 | 0.1732 | | 0.1379 | 1.5337 | 1000 | 0.1737 | | 0.1311 | 1.6871 | 1100 | 0.1615 | | 0.1535 | 1.8405 | 1200 | 0.1606 | | 0.1303 | 1.9939 | 1300 | 0.1637 | | 0.0981 | 2.1472 | 1400 | 0.1542 | | 0.1385 | 2.3006 | 1500 | 0.1311 | | 0.124 | 2.4540 | 1600 | 0.1427 | | 0.1071 | 2.6074 | 1700 | 0.1430 | | 0.1127 | 2.7607 | 1800 | 0.1476 | | 0.1006 | 2.9141 | 1900 | 0.1459 | ### Framework versions - Transformers 4.42.2 - Pytorch 2.3.0+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1