msgerasyov commited on
Commit
4716248
·
1 Parent(s): 0ce9d9d

Upload PPO LunarLander-v2 trained agent

Browse files
README.md CHANGED
@@ -16,7 +16,7 @@ model-index:
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
- value: 196.23 +/- 85.76
20
  name: mean_reward
21
  verified: false
22
  ---
 
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
+ value: 279.91 +/- 22.59
20
  name: mean_reward
21
  verified: false
22
  ---
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f670efc6790>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f670efc6820>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f670efc68b0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f670efc6940>", "_build": "<function ActorCriticPolicy._build at 0x7f670efc69d0>", "forward": "<function ActorCriticPolicy.forward at 0x7f670efc6a60>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f670efc6af0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f670efc6b80>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f670efc6c10>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f670efc6ca0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f670efc6d30>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f670efc9060>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1670868820933679634, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGbmTDqP3lW6k4YkOnDaXLba1Vs7mihAuQAAgD8AAIA/mgnqPK6Jorr3EwO5yS3vs49sgrgl1RY4AACAPwAAgD8ae7o9PXaBP763Er4E4o++jTxDvCjUtLwAAAAAAAAAACrudr5HkiE/sywYPiTkRb5xHqW8G8AOPQAAAAAAAAAAmliYPY+iNLrOBqM7fUhmOF85JLum5Lq4AACAPwAAgD+zTJO9FDCMuno46zoX9JI1IHY9uSxNCLoAAIA/AACAPwae2b5nWzw/OHsPPg/rZ75dVTS+72abPQAAAAAAAAAATXlavVz/XbpDuPQ7gAbiNxYVHLtQ8lw2AACAPwAAgD+NOIa99kAvulhqDLp6r8A1szyju9czJDkAAIA/AACAP4AtJ73DIVy6Far7Ojl5EbZ5Q786ZpMTugAAgD8AAIA/mqKDPK5hkbpQW3I5DwNjNDM0OLoPh4y4AACAPwAAgD8zZG69w60kukWykTkWPg81mnAiO3Z4qLgAAIA/AACAP80XHT1IU4K6Id6rO4SwITfsPFE5jI3FugAAgD8AAIA/zVOuvIVT2bliOps7fZFYONkD2rrZvYa4AACAPwAAgD+mIRm+Anr8Pq7/Rrw7KI++xt7NvTmEJzwAAAAAAAAAADPOlb17Kou6B4ubOk+j3DXk6yA5vlWzuQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVfxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIV5i+1xDfWkCUhpRSlIwBbJRN6AOMAXSUR0CTcL46fapQdX2UKGgGaAloD0MI9IjRc4unZECUhpRSlGgVTegDaBZHQJN0ZxPwd811fZQoaAZoCWgPQwjFru3tFjdgQJSGlFKUaBVN6ANoFkdAk3eLPD50sHV9lChoBmgJaA9DCPm9TX92AGRAlIaUUpRoFU3oA2gWR0CTexvJRwZPdX2UKGgGaAloD0MIh99Nt2yWYkCUhpRSlGgVTegDaBZHQJN/a2WpqAV1fZQoaAZoCWgPQwjtYS8UMOllQJSGlFKUaBVN6ANoFkdAk3+P/JeVs3V9lChoBmgJaA9DCLAe963Wc2BAlIaUUpRoFU3oA2gWR0CThewwCbMHdX2UKGgGaAloD0MIjZyFPe2HUkCUhpRSlGgVTegDaBZHQJOF7hn8Koh1fZQoaAZoCWgPQwi/DwcJUcpaQJSGlFKUaBVN6ANoFkdAk4a/keZG8XV9lChoBmgJaA9DCNsUj4vqsWFAlIaUUpRoFU3oA2gWR0CTjgTQVsUJdX2UKGgGaAloD0MI98q8VdeYY0CUhpRSlGgVTegDaBZHQJOP5gWrOqx1fZQoaAZoCWgPQwj1KjI6IBxdQJSGlFKUaBVN6ANoFkdAk5oFVo6CDnV9lChoBmgJaA9DCDM334ju02BAlIaUUpRoFU3oA2gWR0CTonrhBJI2dX2UKGgGaAloD0MIg4k/ijo4YUCUhpRSlGgVTegDaBZHQJO3bXFtKqZ1fZQoaAZoCWgPQwjL1Y9NclllQJSGlFKUaBVN6ANoFkdAk7f1nh86WHV9lChoBmgJaA9DCNiDSfFxcWBAlIaUUpRoFU3oA2gWR0CTvzrFwT/RdX2UKGgGaAloD0MIc0hqoWQrb0CUhpRSlGgVTV0DaBZHQJPA0XuVopR1fZQoaAZoCWgPQwiNXaJ664tlQJSGlFKUaBVN6ANoFkdAk8Ldxp+MInV9lChoBmgJaA9DCHqPM03YomZAlIaUUpRoFU3oA2gWR0CTxerO7g89dX2UKGgGaAloD0MICkj7H2AGZkCUhpRSlGgVTegDaBZHQJPLiAskIHF1fZQoaAZoCWgPQwjAXIsWIChhQJSGlFKUaBVN6ANoFkdAk89D6nBLwnV9lChoBmgJaA9DCLcJ98q8cl1AlIaUUpRoFU3oA2gWR0CTz2LgGbCrdX2UKGgGaAloD0MI3KFhMeq0YUCUhpRSlGgVTegDaBZHQJPWMtQKrrB1fZQoaAZoCWgPQwjDYtS1dkJiQJSGlFKUaBVN6ANoFkdAk9Y1N1yNoHV9lChoBmgJaA9DCJDcmnTb3WNAlIaUUpRoFU3oA2gWR0CT1xKPXCj2dX2UKGgGaAloD0MIlkIglzgiX0CUhpRSlGgVTegDaBZHQJPem+M6zVt1fZQoaAZoCWgPQwjfqBWm70NVQJSGlFKUaBVN6ANoFkdAk+B+Dzyz5XV9lChoBmgJaA9DCGAgCJAhI2ZAlIaUUpRoFU3oA2gWR0CT6mtz0Yj0dX2UKGgGaAloD0MISBXFq6wbX0CUhpRSlGgVTegDaBZHQJPzn779AHF1fZQoaAZoCWgPQwiastMPalFiQJSGlFKUaBVN6ANoFkdAk/VeAZsKs3V9lChoBmgJaA9DCBwMdVjh0WNAlIaUUpRoFU3oA2gWR0CT9eqOcUdrdX2UKGgGaAloD0MI2pJVEe6QYUCUhpRSlGgVTegDaBZHQJQQwNOM2m51fZQoaAZoCWgPQwjkLVc/tpFjQJSGlFKUaBVN6ANoFkdAlBJtWU8mr3V9lChoBmgJaA9DCAEW+fVDHWdAlIaUUpRoFU3oA2gWR0CUFKWrOqvNdX2UKGgGaAloD0MI22ysxLzIbkCUhpRSlGgVTdsDaBZHQJQXIzJp35h1fZQoaAZoCWgPQwhdiUD1j3xjQJSGlFKUaBVN6ANoFkdAlB2l6mfoR3V9lChoBmgJaA9DCC/5n/xdPmVAlIaUUpRoFU3oA2gWR0CUIXfyf+S9dX2UKGgGaAloD0MIwW7YtiiTYECUhpRSlGgVTegDaBZHQJQhmdXko4N1fZQoaAZoCWgPQwiuK2aEN/tiQJSGlFKUaBVN6ANoFkdAlChGy9mHxnV9lChoBmgJaA9DCPMbJhqkhWNAlIaUUpRoFU3oA2gWR0CUKEiZOSGKdX2UKGgGaAloD0MIJF6ezhXBYkCUhpRSlGgVTegDaBZHQJQpEoBq9Gt1fZQoaAZoCWgPQwgDCB9KtFthQJSGlFKUaBVN6ANoFkdAlDAujZcs2HV9lChoBmgJaA9DCHe7Xpqih2FAlIaUUpRoFU3oA2gWR0CUMhGhVU++dX2UKGgGaAloD0MISmHe48ymYUCUhpRSlGgVTegDaBZHQJQ7t7x/d691fZQoaAZoCWgPQwg0uRgDa21xQJSGlFKUaBVNTQNoFkdAlEPO49X9znV9lChoBmgJaA9DCCwq4nSSkl9AlIaUUpRoFU3oA2gWR0CURCUmlZX/dX2UKGgGaAloD0MIgctjzUg1aECUhpRSlGgVTegDaBZHQJRFlg/keZJ1fZQoaAZoCWgPQwhdiUD1jy5iQJSGlFKUaBVN6ANoFkdAlEYTZxrBTHV9lChoBmgJaA9DCKphvydWfmBAlIaUUpRoFU3oA2gWR0CUYksPatcOdX2UKGgGaAloD0MIw0SDFLzUZECUhpRSlGgVTegDaBZHQJRkyfNA1Nx1fZQoaAZoCWgPQwg3/6868nBhQJSGlFKUaBVN6ANoFkdAlGiiIP9UCXV9lChoBmgJaA9DCPw07s3vF2xAlIaUUpRoFU0/AmgWR0CUa43gDRtxdX2UKGgGaAloD0MIArfu5ilWYECUhpRSlGgVTegDaBZHQJRyRG/etS11fZQoaAZoCWgPQwieeqTBbR5eQJSGlFKUaBVN6ANoFkdAlHaoUahpQHV9lChoBmgJaA9DCDPcgM+PmWFAlIaUUpRoFU3oA2gWR0CUdscbBGhFdX2UKGgGaAloD0MICACOPfsRYkCUhpRSlGgVTegDaBZHQJR8xWhh6Sl1fZQoaAZoCWgPQwgbYrzmVTleQJSGlFKUaBVN6ANoFkdAlHzG56MR6HV9lChoBmgJaA9DCKGd0yxQTGNAlIaUUpRoFU3oA2gWR0CUfZNZNfw7dX2UKGgGaAloD0MIx9rf2d6fcECUhpRSlGgVTXcCaBZHQJSBiZlWfbt1fZQoaAZoCWgPQwj21Oqrq1pmQJSGlFKUaBVN6ANoFkdAlIRrUoa1kXV9lChoBmgJaA9DCO0MU1tqS2FAlIaUUpRoFU3oA2gWR0CUkHxNIsiCdX2UKGgGaAloD0MIKCzxgLI+XkCUhpRSlGgVTegDaBZHQJSX6o86mwd1fZQoaAZoCWgPQwhlw5rKothgQJSGlFKUaBVN6ANoFkdAlJmivPkaM3V9lChoBmgJaA9DCBHIJY68+GBAlIaUUpRoFU3oA2gWR0CUmh08/2TQdX2UKGgGaAloD0MIvaYHBaWNYUCUhpRSlGgVTegDaBZHQJS2F8KG+K11fZQoaAZoCWgPQwjKGB9mrylnQJSGlFKUaBVN6ANoFkdAlLg+T/yXlnV9lChoBmgJaA9DCBxfe2bJAmBAlIaUUpRoFU3oA2gWR0CUum0kGA09dX2UKGgGaAloD0MIzeZxGMwVaUCUhpRSlGgVTegDaBZHQJS8LhUBGQV1fZQoaAZoCWgPQwgwndZtUHBeQJSGlFKUaBVN6ANoFkdAlMAiY1He8HV9lChoBmgJaA9DCISDvYmhlWVAlIaUUpRoFU3oA2gWR0CUw3D2alUIdX2UKGgGaAloD0MInIh+bX2fY0CUhpRSlGgVTegDaBZHQJTDjirDIil1fZQoaAZoCWgPQwiL/zuiwuNhQJSGlFKUaBVN6ANoFkdAlMlj9wWFe3V9lChoBmgJaA9DCFTJAFDFC2FAlIaUUpRoFU3oA2gWR0CUyWXFcY65dX2UKGgGaAloD0MIo1aYvtcxX0CUhpRSlGgVTegDaBZHQJTKK6lLvkR1fZQoaAZoCWgPQwikqZ7Mv1RmQJSGlFKUaBVN6ANoFkdAlM4593KSxXV9lChoBmgJaA9DCBZsI55sQWNAlIaUUpRoFU3oA2gWR0CU0T+WGATadX2UKGgGaAloD0MIJezbSUToPECUhpRSlGgVTQ8BaBZHQJTSYJv5xip1fZQoaAZoCWgPQwh6GFqdnDFfQJSGlFKUaBVN6ANoFkdAlNxQfuCwr3V9lChoBmgJaA9DCPvL7snDHWFAlIaUUpRoFU3oA2gWR0CU48Npudf+dX2UKGgGaAloD0MId6BOefSJY0CUhpRSlGgVTegDaBZHQJTlhYB/7SB1fZQoaAZoCWgPQwiwdhTnKP5kQJSGlFKUaBVN6ANoFkdAlOYBjSXt0HV9lChoBmgJaA9DCHpvDAHAzmFAlIaUUpRoFU3oA2gWR0CVAnlV94NadX2UKGgGaAloD0MIlpf8T34aZECUhpRSlGgVTegDaBZHQJUEnCYTkAB1fZQoaAZoCWgPQwhGDDuMSf9eQJSGlFKUaBVN6ANoFkdAlQb/sVtXP3V9lChoBmgJaA9DCJw0DYrmIGdAlIaUUpRoFU3oA2gWR0CVCRb5uZTidX2UKGgGaAloD0MITmGlgorqYUCUhpRSlGgVTegDaBZHQJUNsAuIyj51fZQoaAZoCWgPQwgIPZtVH0lkQJSGlFKUaBVN6ANoFkdAlRG4p2ECeXV9lChoBmgJaA9DCIy/7QkSamNAlIaUUpRoFU3oA2gWR0CVGCkiliz+dX2UKGgGaAloD0MIYJLKFPPqZUCUhpRSlGgVTegDaBZHQJUYK86FM7F1fZQoaAZoCWgPQwizQLtDirFYQJSGlFKUaBVN6ANoFkdAlRjvio86m3V9lChoBmgJaA9DCNNnB1xXl19AlIaUUpRoFU3oA2gWR0CVHHQ2uPmxdX2UKGgGaAloD0MIb5wU5r1DYkCUhpRSlGgVTegDaBZHQJUe7MOf/WF1fZQoaAZoCWgPQwi3uMZnsgdgQJSGlFKUaBVN6ANoFkdAlR/yauwHJXV9lChoBmgJaA9DCG6hKxGoHk9AlIaUUpRoFUvraBZHQJUjhRxcVxl1fZQoaAZoCWgPQwgEcokjD9QqQJSGlFKUaBVL+mgWR0CVJQ+kxh2GdX2UKGgGaAloD0MItmeWBKhFZ0CUhpRSlGgVTegDaBZHQJUpC6PKdQR1fZQoaAZoCWgPQwguAfin1ElmQJSGlFKUaBVN6ANoFkdAlS/mX5WRzXV9lChoBmgJaA9DCPooIy6ACGNAlIaUUpRoFU3oA2gWR0CVMYRc/t6YdX2UKGgGaAloD0MI/MbXnlnZZUCUhpRSlGgVTegDaBZHQJUx8u/UONJ1fZQoaAZoCWgPQwikNJvHYdBKQJSGlFKUaBVNDwFoFkdAlTK+DvmYB3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fd797e4f670>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fd797e4f700>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fd797e4f790>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fd797e4f820>", "_build": "<function ActorCriticPolicy._build at 0x7fd797e4f8b0>", "forward": "<function ActorCriticPolicy.forward at 0x7fd797e4f940>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fd797e4f9d0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fd797e4fa60>", "_predict": "<function ActorCriticPolicy._predict at 0x7fd797e4faf0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fd797e4fb80>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fd797e4fc10>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fd797e4fca0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fd797e499f0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 3014656, "_total_timesteps": 3000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1673711846890502780, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADP5BL0cFCy8gl87PiWwlj1pgTu88Nz2OwAAgD8AAIA/MwKJvMy/mT569Wi9NjHfvnNmgb1+aum6AAAAAAAAAACawf08NgopvMcWKr7SI7q9eA66PTqICD8AAAAAAACAP2BgTT4bHok/DnKpPYE9DL+KiKc+hm4bvgAAAAAAAAAAGiocvVyrM7pEZwM44cYuM+3MTzt+MBu3AACAPwAAgD/NcnE8XGtzup1QeDuZqW04J5zyOWqLGboAAAAAAAAAAEB1FL7UOZ0+JcC1PeLOwL5RnPS90enKPQAAAAAAAAAAZkhDvDo0Yz8QhX690pgDv71T5TydxAK9AAAAAAAAAAAaUxs90EjjPh5rUL4jIvq+dbrjvefWR70AAAAAAAAAAE2duL1r4GQ/aFMzvnPVGL8oWq29GEXCPAAAAAAAAAAAzSAEvEPHS7xVq4S9PjcoPJcAwD10oQ29AACAPwAAgD8A+wY9yLUEP9L96zuf+8u+XhtgPAqHvLwAAAAAAAAAADPFgjw4scm72UOkO1/pkjzAmSu9OPF3PQAAgD8AAIA/cGK6Pio+fj+uqa28tff4vtRTID+DWK29AAAAAAAAAADa34g9XzbWPhtkUr6PBOW+DWWkvHKk870AAAAAAAAAAAA9WT0u9J09Jzw9vu76xb5csii+v+e9vAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.004885333333333408, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVJRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIF7mnqztyckCUhpRSlIwBbJRL0IwBdJRHQKTXYSzPa+N1fZQoaAZoCWgPQwj51of1hshwQJSGlFKUaBVL0GgWR0Ck13Xbuc+adX2UKGgGaAloD0MIi3H+JtTFc0CUhpRSlGgVS+1oFkdApNfaFEiMYXV9lChoBmgJaA9DCDlkA+lisHFAlIaUUpRoFUu4aBZHQKTX7oV2zOZ1fZQoaAZoCWgPQwj3Oqkvi99wQJSGlFKUaBVLvmgWR0Ck1/8BdUsGdX2UKGgGaAloD0MId/cA3ZeNcECUhpRSlGgVS9BoFkdApNgJ9Vmz0HV9lChoBmgJaA9DCK33G+049G9AlIaUUpRoFUvKaBZHQKTYO89Oh011fZQoaAZoCWgPQwjWAKWhhrZzQJSGlFKUaBVL7WgWR0Ck2JXJYDDCdX2UKGgGaAloD0MIHAsKg7KScECUhpRSlGgVTQkBaBZHQKTYvUGVzIV1fZQoaAZoCWgPQwhkyoegasNyQJSGlFKUaBVL2GgWR0Ck2N3yI55rdX2UKGgGaAloD0MIILb0aGpdcECUhpRSlGgVS8ZoFkdApNkWaScLB3V9lChoBmgJaA9DCIxNK4WAanFAlIaUUpRoFUvVaBZHQKTZJfShJy11fZQoaAZoCWgPQwgxPzc0ZYlzQJSGlFKUaBVL7GgWR0Ck2Xl3Y+SsdX2UKGgGaAloD0MIxFp8CsDNcUCUhpRSlGgVS+BoFkdApNmb5ftx/HV9lChoBmgJaA9DCMu+K4J/NHBAlIaUUpRoFUvQaBZHQKTZpBrN4aB1fZQoaAZoCWgPQwjpLLMIBT5xQJSGlFKUaBVL42gWR0Ck2bxL0z0pdX2UKGgGaAloD0MIJsPxfAbBckCUhpRSlGgVS9loFkdApNnYNPP9k3V9lChoBmgJaA9DCPPMy2H3SnJAlIaUUpRoFUvIaBZHQKTaN8IAwPB1fZQoaAZoCWgPQwiF7/0NmjVzQJSGlFKUaBVL4GgWR0Ck2lcbzbvgdX2UKGgGaAloD0MIO8JpwcsZckCUhpRSlGgVS9toFkdApNpc45tFa3V9lChoBmgJaA9DCILlCBlI93BAlIaUUpRoFUvKaBZHQKTafiobXH11fZQoaAZoCWgPQwhkyRzLO3FxQJSGlFKUaBVL3WgWR0Ck2n6mXPZ7dX2UKGgGaAloD0MIkPeqlYlIckCUhpRSlGgVS9ZoFkdApNtFOEdvKnV9lChoBmgJaA9DCEvNHmhF7HJAlIaUUpRoFUvxaBZHQKTbTStNi6R1fZQoaAZoCWgPQwgyBADH3gtyQJSGlFKUaBVLwWgWR0Ck21h0ZFXrdX2UKGgGaAloD0MIbXAi+rUdckCUhpRSlGgVS+poFkdApNtiWszVMHV9lChoBmgJaA9DCG9IowJnLHNAlIaUUpRoFUvPaBZHQKTbdC0ngHh1fZQoaAZoCWgPQwidL/ZefJZwQJSGlFKUaBVLv2gWR0Ck26Z8KG+LdX2UKGgGaAloD0MIDtdqD/tZcUCUhpRSlGgVS9NoFkdApNwrdvbXYnV9lChoBmgJaA9DCMaoa+09KXFAlIaUUpRoFUvcaBZHQKTcMb1AZ891fZQoaAZoCWgPQwgcfcwHRDh0QJSGlFKUaBVL5WgWR0Ck3EVDrqt6dX2UKGgGaAloD0MIrp/+syaLckCUhpRSlGgVS99oFkdApNz0+RoysXV9lChoBmgJaA9DCOY9zjRhvm9AlIaUUpRoFUvQaBZHQKTc9Fl05lx1fZQoaAZoCWgPQwhUbqKWJuRxQJSGlFKUaBVL9mgWR0Ck5wFCb+cZdX2UKGgGaAloD0MI6Q5iZ0qcckCUhpRSlGgVS+VoFkdApOcbCk43m3V9lChoBmgJaA9DCDULtDsko3NAlIaUUpRoFUv0aBZHQKTnI3nZCfJ1fZQoaAZoCWgPQwgG8YEdf1dwQJSGlFKUaBVLw2gWR0Ck56kB0ZFYdX2UKGgGaAloD0MIE0ceiCwRckCUhpRSlGgVTVUBaBZHQKTnx5cC5mR1fZQoaAZoCWgPQwgTC3xFt3NwQJSGlFKUaBVL12gWR0Ck582UbDMvdX2UKGgGaAloD0MIndoZpraWb0CUhpRSlGgVS9hoFkdApOfXgpBomHV9lChoBmgJaA9DCPiMRGiEb3FAlIaUUpRoFUvZaBZHQKTn474i5d51fZQoaAZoCWgPQwjknq7uWI5xQJSGlFKUaBVL02gWR0Ck5+p+DvmYdX2UKGgGaAloD0MIzCkBMUnEckCUhpRSlGgVS/JoFkdApOh+PLgXM3V9lChoBmgJaA9DCLDJGvWQn29AlIaUUpRoFUvTaBZHQKTonhz/6wd1fZQoaAZoCWgPQwjrOel947JyQJSGlFKUaBVL5GgWR0Ck6NOR1X/6dX2UKGgGaAloD0MIrBkZ5G58ckCUhpRSlGgVS+ZoFkdApOjtmz0HyHV9lChoBmgJaA9DCFq9w+2QlnBAlIaUUpRoFUuwaBZHQKTo+GeMAFR1fZQoaAZoCWgPQwgct5ifG+JxQJSGlFKUaBVLzWgWR0Ck6ZglF+d9dX2UKGgGaAloD0MIYCAIkCFXcECUhpRSlGgVS9loFkdApOnL+JgssnV9lChoBmgJaA9DCAPQKF36MnBAlIaUUpRoFUvyaBZHQKTp0ewLVnV1fZQoaAZoCWgPQwj36A33ETFyQJSGlFKUaBVL7WgWR0Ck6evvjOs1dX2UKGgGaAloD0MIDOVEuworcUCUhpRSlGgVS7ZoFkdApOoiBZpztHV9lChoBmgJaA9DCLH9ZIxPbnFAlIaUUpRoFUu6aBZHQKTqNQMx46h1fZQoaAZoCWgPQwhgHccPFTdxQJSGlFKUaBVLzWgWR0Ck6lMefZmJdX2UKGgGaAloD0MI0QfL2FDPc0CUhpRSlGgVS9loFkdApOpw02tMf3V9lChoBmgJaA9DCL01sFXC0HFAlIaUUpRoFUvqaBZHQKTqhwnYxtZ1fZQoaAZoCWgPQwg7/3bZb59wQJSGlFKUaBVLwWgWR0Ck6v9BjWkKdX2UKGgGaAloD0MIclMDzWfIckCUhpRSlGgVS9VoFkdApOsccyWRinV9lChoBmgJaA9DCDXs98Q6TXRAlIaUUpRoFUvZaBZHQKTrjGNJe3R1fZQoaAZoCWgPQwhaY9AJ4WlyQJSGlFKUaBVL1GgWR0Ck65gTZg5SdX2UKGgGaAloD0MI1H/W/LhsckCUhpRSlGgVS7poFkdApOvzfUF0P3V9lChoBmgJaA9DCL76eOj7dHNAlIaUUpRoFUvRaBZHQKTsf5Y5ksl1fZQoaAZoCWgPQwjIztvYbONzQJSGlFKUaBVL1GgWR0Ck7IRgy/KydX2UKGgGaAloD0MI0sPQ6uQ6b0CUhpRSlGgVS8xoFkdApOzcIiTt9nV9lChoBmgJaA9DCECKOnMPzW5AlIaUUpRoFUvRaBZHQKTs2ZsKsuF1fZQoaAZoCWgPQwiveysSE2BPQJSGlFKUaBVLvGgWR0Ck7QTL4etCdX2UKGgGaAloD0MIZ9MRwE1xc0CUhpRSlGgVS/BoFkdApO0Lpkf9xnV9lChoBmgJaA9DCLWHvVBAsGNAlIaUUpRoFU3oA2gWR0Ck7RVtGd7OdX2UKGgGaAloD0MIED//PbgkcUCUhpRSlGgVS8xoFkdApO0fhybQTnV9lChoBmgJaA9DCEOQgxKmrHJAlIaUUpRoFUvgaBZHQKTtOqS5iEx1fZQoaAZoCWgPQwiNKVjjLBVxQJSGlFKUaBVLt2gWR0Ck7WjA8B+4dX2UKGgGaAloD0MI+daH9cZCckCUhpRSlGgVS/5oFkdApO50TpPhynV9lChoBmgJaA9DCM5PcRx47XBAlIaUUpRoFUvcaBZHQKTucozeoDR1fZQoaAZoCWgPQwjTEiuj0c1xQJSGlFKUaBVL4WgWR0Ck7o4x+KCQdX2UKGgGaAloD0MIYtf2dssncUCUhpRSlGgVS85oFkdApO6lqHoHLXV9lChoBmgJaA9DCG4UWWvocXJAlIaUUpRoFUvOaBZHQKTvJhOP/711fZQoaAZoCWgPQwj7IwwDltBtQJSGlFKUaBVL0GgWR0Ck74NUn5SFdX2UKGgGaAloD0MIqS7gZca5ckCUhpRSlGgVS+toFkdApO+MvkBCD3V9lChoBmgJaA9DCIRjlj1JZHFAlIaUUpRoFUvGaBZHQKTvka86FM91fZQoaAZoCWgPQwiF61G4Xl9wQJSGlFKUaBVLx2gWR0Ck76px//eddX2UKGgGaAloD0MIq+l6omvkcUCUhpRSlGgVS+xoFkdApO/lLrX18XV9lChoBmgJaA9DCDqVDACVxHFAlIaUUpRoFUvnaBZHQKTv+JQcghd1fZQoaAZoCWgPQwgr2bERCDdyQJSGlFKUaBVL32gWR0Ck8Ba/IsAedX2UKGgGaAloD0MI+pl63aKicECUhpRSlGgVS9RoFkdApPAoM4LkS3V9lChoBmgJaA9DCD19BP7wLnJAlIaUUpRoFUv1aBZHQKTwMRAbADd1fZQoaAZoCWgPQwg83XniebBxQJSGlFKUaBVLymgWR0Ck8Qba7EpBdX2UKGgGaAloD0MIxVVl39Xoc0CUhpRSlGgVS9xoFkdApPFEcdYGMXV9lChoBmgJaA9DCBAjhEcbQnFAlIaUUpRoFUvraBZHQKTxmLyc0+F1fZQoaAZoCWgPQwjZBYNrbrZzQJSGlFKUaBVNCAFoFkdApPIr4DcM3XV9lChoBmgJaA9DCKq53GCotHFAlIaUUpRoFUvGaBZHQKTyOla8pTd1fZQoaAZoCWgPQwilMVpHlcVyQJSGlFKUaBVL42gWR0Ck8pcU21lYdX2UKGgGaAloD0MIU14robsbcECUhpRSlGgVS+loFkdApPK3ZCfHxXV9lChoBmgJaA9DCFitTPilkHNAlIaUUpRoFUvNaBZHQKTyyFY+0PZ1fZQoaAZoCWgPQwj6fJQR111yQJSGlFKUaBVL0GgWR0Ck8vVuR9w4dX2UKGgGaAloD0MItoR80HNlckCUhpRSlGgVTRwBaBZHQKTzCZOSGJx1fZQoaAZoCWgPQwiiXYWUHzRtQJSGlFKUaBVNAgFoFkdApPMtYbKif3V9lChoBmgJaA9DCDJXBtWGhHFAlIaUUpRoFUvgaBZHQKTzSby6MBJ1fZQoaAZoCWgPQwhUc7nB0KlzQJSGlFKUaBVL/2gWR0Ck81xiw0O3dX2UKGgGaAloD0MIoRSt3EtKcECUhpRSlGgVTYwDaBZHQKTznNfw7T51fZQoaAZoCWgPQwjXicvxiuFxQJSGlFKUaBVNAAFoFkdApPOkEidJ8XVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 736, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.27 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:3476e279d1939e6305a49e142b2ff6da338ccba18f46c568f5d2f00130cf76f8
3
- size 147218
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:66dde45484f56d3f1e91807a7476d750723d36ffc89df3d2c9ed8d86b95816f4
3
+ size 147304
ppo-LunarLander-v2/_stable_baselines3_version CHANGED
@@ -1 +1 @@
1
- 1.6.2
 
1
+ 1.7.0
ppo-LunarLander-v2/data CHANGED
@@ -3,20 +3,21 @@
3
  ":type:": "<class 'abc.ABCMeta'>",
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
- "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
- "__init__": "<function ActorCriticPolicy.__init__ at 0x7f670efc6790>",
8
- "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f670efc6820>",
9
- "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f670efc68b0>",
10
- "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f670efc6940>",
11
- "_build": "<function ActorCriticPolicy._build at 0x7f670efc69d0>",
12
- "forward": "<function ActorCriticPolicy.forward at 0x7f670efc6a60>",
13
- "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f670efc6af0>",
14
- "_predict": "<function ActorCriticPolicy._predict at 0x7f670efc6b80>",
15
- "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f670efc6c10>",
16
- "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f670efc6ca0>",
17
- "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f670efc6d30>",
 
18
  "__abstractmethods__": "frozenset()",
19
- "_abc_impl": "<_abc_data object at 0x7f670efc9060>"
20
  },
21
  "verbose": 1,
22
  "policy_kwargs": {},
@@ -42,21 +43,21 @@
42
  "_np_random": null
43
  },
44
  "n_envs": 16,
45
- "num_timesteps": 1015808,
46
- "_total_timesteps": 1000000,
47
  "_num_timesteps_at_start": 0,
48
  "seed": null,
49
  "action_noise": null,
50
- "start_time": 1670868820933679634,
51
  "learning_rate": 0.0003,
52
  "tensorboard_log": null,
53
  "lr_schedule": {
54
  ":type:": "<class 'function'>",
55
- ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
56
  },
57
  "_last_obs": {
58
  ":type:": "<class 'numpy.ndarray'>",
59
- ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGbmTDqP3lW6k4YkOnDaXLba1Vs7mihAuQAAgD8AAIA/mgnqPK6Jorr3EwO5yS3vs49sgrgl1RY4AACAPwAAgD8ae7o9PXaBP763Er4E4o++jTxDvCjUtLwAAAAAAAAAACrudr5HkiE/sywYPiTkRb5xHqW8G8AOPQAAAAAAAAAAmliYPY+iNLrOBqM7fUhmOF85JLum5Lq4AACAPwAAgD+zTJO9FDCMuno46zoX9JI1IHY9uSxNCLoAAIA/AACAPwae2b5nWzw/OHsPPg/rZ75dVTS+72abPQAAAAAAAAAATXlavVz/XbpDuPQ7gAbiNxYVHLtQ8lw2AACAPwAAgD+NOIa99kAvulhqDLp6r8A1szyju9czJDkAAIA/AACAP4AtJ73DIVy6Far7Ojl5EbZ5Q786ZpMTugAAgD8AAIA/mqKDPK5hkbpQW3I5DwNjNDM0OLoPh4y4AACAPwAAgD8zZG69w60kukWykTkWPg81mnAiO3Z4qLgAAIA/AACAP80XHT1IU4K6Id6rO4SwITfsPFE5jI3FugAAgD8AAIA/zVOuvIVT2bliOps7fZFYONkD2rrZvYa4AACAPwAAgD+mIRm+Anr8Pq7/Rrw7KI++xt7NvTmEJzwAAAAAAAAAADPOlb17Kou6B4ubOk+j3DXk6yA5vlWzuQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
  },
61
  "_last_episode_starts": {
62
  ":type:": "<class 'numpy.ndarray'>",
@@ -66,16 +67,16 @@
66
  "_episode_num": 0,
67
  "use_sde": false,
68
  "sde_sample_freq": -1,
69
- "_current_progress_remaining": -0.015808000000000044,
70
  "ep_info_buffer": {
71
  ":type:": "<class 'collections.deque'>",
72
- ":serialized:": "gAWVfxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIV5i+1xDfWkCUhpRSlIwBbJRN6AOMAXSUR0CTcL46fapQdX2UKGgGaAloD0MI9IjRc4unZECUhpRSlGgVTegDaBZHQJN0ZxPwd811fZQoaAZoCWgPQwjFru3tFjdgQJSGlFKUaBVN6ANoFkdAk3eLPD50sHV9lChoBmgJaA9DCPm9TX92AGRAlIaUUpRoFU3oA2gWR0CTexvJRwZPdX2UKGgGaAloD0MIh99Nt2yWYkCUhpRSlGgVTegDaBZHQJN/a2WpqAV1fZQoaAZoCWgPQwjtYS8UMOllQJSGlFKUaBVN6ANoFkdAk3+P/JeVs3V9lChoBmgJaA9DCLAe963Wc2BAlIaUUpRoFU3oA2gWR0CThewwCbMHdX2UKGgGaAloD0MIjZyFPe2HUkCUhpRSlGgVTegDaBZHQJOF7hn8Koh1fZQoaAZoCWgPQwi/DwcJUcpaQJSGlFKUaBVN6ANoFkdAk4a/keZG8XV9lChoBmgJaA9DCNsUj4vqsWFAlIaUUpRoFU3oA2gWR0CTjgTQVsUJdX2UKGgGaAloD0MI98q8VdeYY0CUhpRSlGgVTegDaBZHQJOP5gWrOqx1fZQoaAZoCWgPQwj1KjI6IBxdQJSGlFKUaBVN6ANoFkdAk5oFVo6CDnV9lChoBmgJaA9DCDM334ju02BAlIaUUpRoFU3oA2gWR0CTonrhBJI2dX2UKGgGaAloD0MIg4k/ijo4YUCUhpRSlGgVTegDaBZHQJO3bXFtKqZ1fZQoaAZoCWgPQwjL1Y9NclllQJSGlFKUaBVN6ANoFkdAk7f1nh86WHV9lChoBmgJaA9DCNiDSfFxcWBAlIaUUpRoFU3oA2gWR0CTvzrFwT/RdX2UKGgGaAloD0MIc0hqoWQrb0CUhpRSlGgVTV0DaBZHQJPA0XuVopR1fZQoaAZoCWgPQwiNXaJ664tlQJSGlFKUaBVN6ANoFkdAk8Ldxp+MInV9lChoBmgJaA9DCHqPM03YomZAlIaUUpRoFU3oA2gWR0CTxerO7g89dX2UKGgGaAloD0MICkj7H2AGZkCUhpRSlGgVTegDaBZHQJPLiAskIHF1fZQoaAZoCWgPQwjAXIsWIChhQJSGlFKUaBVN6ANoFkdAk89D6nBLwnV9lChoBmgJaA9DCLcJ98q8cl1AlIaUUpRoFU3oA2gWR0CTz2LgGbCrdX2UKGgGaAloD0MI3KFhMeq0YUCUhpRSlGgVTegDaBZHQJPWMtQKrrB1fZQoaAZoCWgPQwjDYtS1dkJiQJSGlFKUaBVN6ANoFkdAk9Y1N1yNoHV9lChoBmgJaA9DCJDcmnTb3WNAlIaUUpRoFU3oA2gWR0CT1xKPXCj2dX2UKGgGaAloD0MIlkIglzgiX0CUhpRSlGgVTegDaBZHQJPem+M6zVt1fZQoaAZoCWgPQwjfqBWm70NVQJSGlFKUaBVN6ANoFkdAk+B+Dzyz5XV9lChoBmgJaA9DCGAgCJAhI2ZAlIaUUpRoFU3oA2gWR0CT6mtz0Yj0dX2UKGgGaAloD0MISBXFq6wbX0CUhpRSlGgVTegDaBZHQJPzn779AHF1fZQoaAZoCWgPQwiastMPalFiQJSGlFKUaBVN6ANoFkdAk/VeAZsKs3V9lChoBmgJaA9DCBwMdVjh0WNAlIaUUpRoFU3oA2gWR0CT9eqOcUdrdX2UKGgGaAloD0MI2pJVEe6QYUCUhpRSlGgVTegDaBZHQJQQwNOM2m51fZQoaAZoCWgPQwjkLVc/tpFjQJSGlFKUaBVN6ANoFkdAlBJtWU8mr3V9lChoBmgJaA9DCAEW+fVDHWdAlIaUUpRoFU3oA2gWR0CUFKWrOqvNdX2UKGgGaAloD0MI22ysxLzIbkCUhpRSlGgVTdsDaBZHQJQXIzJp35h1fZQoaAZoCWgPQwhdiUD1j3xjQJSGlFKUaBVN6ANoFkdAlB2l6mfoR3V9lChoBmgJaA9DCC/5n/xdPmVAlIaUUpRoFU3oA2gWR0CUIXfyf+S9dX2UKGgGaAloD0MIwW7YtiiTYECUhpRSlGgVTegDaBZHQJQhmdXko4N1fZQoaAZoCWgPQwiuK2aEN/tiQJSGlFKUaBVN6ANoFkdAlChGy9mHxnV9lChoBmgJaA9DCPMbJhqkhWNAlIaUUpRoFU3oA2gWR0CUKEiZOSGKdX2UKGgGaAloD0MIJF6ezhXBYkCUhpRSlGgVTegDaBZHQJQpEoBq9Gt1fZQoaAZoCWgPQwgDCB9KtFthQJSGlFKUaBVN6ANoFkdAlDAujZcs2HV9lChoBmgJaA9DCHe7Xpqih2FAlIaUUpRoFU3oA2gWR0CUMhGhVU++dX2UKGgGaAloD0MISmHe48ymYUCUhpRSlGgVTegDaBZHQJQ7t7x/d691fZQoaAZoCWgPQwg0uRgDa21xQJSGlFKUaBVNTQNoFkdAlEPO49X9znV9lChoBmgJaA9DCCwq4nSSkl9AlIaUUpRoFU3oA2gWR0CURCUmlZX/dX2UKGgGaAloD0MIgctjzUg1aECUhpRSlGgVTegDaBZHQJRFlg/keZJ1fZQoaAZoCWgPQwhdiUD1jy5iQJSGlFKUaBVN6ANoFkdAlEYTZxrBTHV9lChoBmgJaA9DCKphvydWfmBAlIaUUpRoFU3oA2gWR0CUYksPatcOdX2UKGgGaAloD0MIw0SDFLzUZECUhpRSlGgVTegDaBZHQJRkyfNA1Nx1fZQoaAZoCWgPQwg3/6868nBhQJSGlFKUaBVN6ANoFkdAlGiiIP9UCXV9lChoBmgJaA9DCPw07s3vF2xAlIaUUpRoFU0/AmgWR0CUa43gDRtxdX2UKGgGaAloD0MIArfu5ilWYECUhpRSlGgVTegDaBZHQJRyRG/etS11fZQoaAZoCWgPQwieeqTBbR5eQJSGlFKUaBVN6ANoFkdAlHaoUahpQHV9lChoBmgJaA9DCDPcgM+PmWFAlIaUUpRoFU3oA2gWR0CUdscbBGhFdX2UKGgGaAloD0MICACOPfsRYkCUhpRSlGgVTegDaBZHQJR8xWhh6Sl1fZQoaAZoCWgPQwgbYrzmVTleQJSGlFKUaBVN6ANoFkdAlHzG56MR6HV9lChoBmgJaA9DCKGd0yxQTGNAlIaUUpRoFU3oA2gWR0CUfZNZNfw7dX2UKGgGaAloD0MIx9rf2d6fcECUhpRSlGgVTXcCaBZHQJSBiZlWfbt1fZQoaAZoCWgPQwj21Oqrq1pmQJSGlFKUaBVN6ANoFkdAlIRrUoa1kXV9lChoBmgJaA9DCO0MU1tqS2FAlIaUUpRoFU3oA2gWR0CUkHxNIsiCdX2UKGgGaAloD0MIKCzxgLI+XkCUhpRSlGgVTegDaBZHQJSX6o86mwd1fZQoaAZoCWgPQwhlw5rKothgQJSGlFKUaBVN6ANoFkdAlJmivPkaM3V9lChoBmgJaA9DCBHIJY68+GBAlIaUUpRoFU3oA2gWR0CUmh08/2TQdX2UKGgGaAloD0MIvaYHBaWNYUCUhpRSlGgVTegDaBZHQJS2F8KG+K11fZQoaAZoCWgPQwjKGB9mrylnQJSGlFKUaBVN6ANoFkdAlLg+T/yXlnV9lChoBmgJaA9DCBxfe2bJAmBAlIaUUpRoFU3oA2gWR0CUum0kGA09dX2UKGgGaAloD0MIzeZxGMwVaUCUhpRSlGgVTegDaBZHQJS8LhUBGQV1fZQoaAZoCWgPQwgwndZtUHBeQJSGlFKUaBVN6ANoFkdAlMAiY1He8HV9lChoBmgJaA9DCISDvYmhlWVAlIaUUpRoFU3oA2gWR0CUw3D2alUIdX2UKGgGaAloD0MInIh+bX2fY0CUhpRSlGgVTegDaBZHQJTDjirDIil1fZQoaAZoCWgPQwiL/zuiwuNhQJSGlFKUaBVN6ANoFkdAlMlj9wWFe3V9lChoBmgJaA9DCFTJAFDFC2FAlIaUUpRoFU3oA2gWR0CUyWXFcY65dX2UKGgGaAloD0MIo1aYvtcxX0CUhpRSlGgVTegDaBZHQJTKK6lLvkR1fZQoaAZoCWgPQwikqZ7Mv1RmQJSGlFKUaBVN6ANoFkdAlM4593KSxXV9lChoBmgJaA9DCBZsI55sQWNAlIaUUpRoFU3oA2gWR0CU0T+WGATadX2UKGgGaAloD0MIJezbSUToPECUhpRSlGgVTQ8BaBZHQJTSYJv5xip1fZQoaAZoCWgPQwh6GFqdnDFfQJSGlFKUaBVN6ANoFkdAlNxQfuCwr3V9lChoBmgJaA9DCPvL7snDHWFAlIaUUpRoFU3oA2gWR0CU48Npudf+dX2UKGgGaAloD0MId6BOefSJY0CUhpRSlGgVTegDaBZHQJTlhYB/7SB1fZQoaAZoCWgPQwiwdhTnKP5kQJSGlFKUaBVN6ANoFkdAlOYBjSXt0HV9lChoBmgJaA9DCHpvDAHAzmFAlIaUUpRoFU3oA2gWR0CVAnlV94NadX2UKGgGaAloD0MIlpf8T34aZECUhpRSlGgVTegDaBZHQJUEnCYTkAB1fZQoaAZoCWgPQwhGDDuMSf9eQJSGlFKUaBVN6ANoFkdAlQb/sVtXP3V9lChoBmgJaA9DCJw0DYrmIGdAlIaUUpRoFU3oA2gWR0CVCRb5uZTidX2UKGgGaAloD0MITmGlgorqYUCUhpRSlGgVTegDaBZHQJUNsAuIyj51fZQoaAZoCWgPQwgIPZtVH0lkQJSGlFKUaBVN6ANoFkdAlRG4p2ECeXV9lChoBmgJaA9DCIy/7QkSamNAlIaUUpRoFU3oA2gWR0CVGCkiliz+dX2UKGgGaAloD0MIYJLKFPPqZUCUhpRSlGgVTegDaBZHQJUYK86FM7F1fZQoaAZoCWgPQwizQLtDirFYQJSGlFKUaBVN6ANoFkdAlRjvio86m3V9lChoBmgJaA9DCNNnB1xXl19AlIaUUpRoFU3oA2gWR0CVHHQ2uPmxdX2UKGgGaAloD0MIb5wU5r1DYkCUhpRSlGgVTegDaBZHQJUe7MOf/WF1fZQoaAZoCWgPQwi3uMZnsgdgQJSGlFKUaBVN6ANoFkdAlR/yauwHJXV9lChoBmgJaA9DCG6hKxGoHk9AlIaUUpRoFUvraBZHQJUjhRxcVxl1fZQoaAZoCWgPQwgEcokjD9QqQJSGlFKUaBVL+mgWR0CVJQ+kxh2GdX2UKGgGaAloD0MItmeWBKhFZ0CUhpRSlGgVTegDaBZHQJUpC6PKdQR1fZQoaAZoCWgPQwguAfin1ElmQJSGlFKUaBVN6ANoFkdAlS/mX5WRzXV9lChoBmgJaA9DCPooIy6ACGNAlIaUUpRoFU3oA2gWR0CVMYRc/t6YdX2UKGgGaAloD0MI/MbXnlnZZUCUhpRSlGgVTegDaBZHQJUx8u/UONJ1fZQoaAZoCWgPQwikNJvHYdBKQJSGlFKUaBVNDwFoFkdAlTK+DvmYB3VlLg=="
73
  },
74
  "ep_success_buffer": {
75
  ":type:": "<class 'collections.deque'>",
76
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
  },
78
- "_n_updates": 248,
79
  "n_steps": 1024,
80
  "gamma": 0.999,
81
  "gae_lambda": 0.98,
@@ -86,7 +87,7 @@
86
  "n_epochs": 4,
87
  "clip_range": {
88
  ":type:": "<class 'function'>",
89
- ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
90
  },
91
  "clip_range_vf": null,
92
  "normalize_advantage": true,
 
3
  ":type:": "<class 'abc.ABCMeta'>",
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fd797e4f670>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fd797e4f700>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fd797e4f790>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fd797e4f820>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fd797e4f8b0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fd797e4f940>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fd797e4f9d0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fd797e4fa60>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fd797e4faf0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fd797e4fb80>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fd797e4fc10>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fd797e4fca0>",
19
  "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7fd797e499f0>"
21
  },
22
  "verbose": 1,
23
  "policy_kwargs": {},
 
43
  "_np_random": null
44
  },
45
  "n_envs": 16,
46
+ "num_timesteps": 3014656,
47
+ "_total_timesteps": 3000000,
48
  "_num_timesteps_at_start": 0,
49
  "seed": null,
50
  "action_noise": null,
51
+ "start_time": 1673711846890502780,
52
  "learning_rate": 0.0003,
53
  "tensorboard_log": null,
54
  "lr_schedule": {
55
  ":type:": "<class 'function'>",
56
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
57
  },
58
  "_last_obs": {
59
  ":type:": "<class 'numpy.ndarray'>",
60
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADP5BL0cFCy8gl87PiWwlj1pgTu88Nz2OwAAgD8AAIA/MwKJvMy/mT569Wi9NjHfvnNmgb1+aum6AAAAAAAAAACawf08NgopvMcWKr7SI7q9eA66PTqICD8AAAAAAACAP2BgTT4bHok/DnKpPYE9DL+KiKc+hm4bvgAAAAAAAAAAGiocvVyrM7pEZwM44cYuM+3MTzt+MBu3AACAPwAAgD/NcnE8XGtzup1QeDuZqW04J5zyOWqLGboAAAAAAAAAAEB1FL7UOZ0+JcC1PeLOwL5RnPS90enKPQAAAAAAAAAAZkhDvDo0Yz8QhX690pgDv71T5TydxAK9AAAAAAAAAAAaUxs90EjjPh5rUL4jIvq+dbrjvefWR70AAAAAAAAAAE2duL1r4GQ/aFMzvnPVGL8oWq29GEXCPAAAAAAAAAAAzSAEvEPHS7xVq4S9PjcoPJcAwD10oQ29AACAPwAAgD8A+wY9yLUEP9L96zuf+8u+XhtgPAqHvLwAAAAAAAAAADPFgjw4scm72UOkO1/pkjzAmSu9OPF3PQAAgD8AAIA/cGK6Pio+fj+uqa28tff4vtRTID+DWK29AAAAAAAAAADa34g9XzbWPhtkUr6PBOW+DWWkvHKk870AAAAAAAAAAAA9WT0u9J09Jzw9vu76xb5csii+v+e9vAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
61
  },
62
  "_last_episode_starts": {
63
  ":type:": "<class 'numpy.ndarray'>",
 
67
  "_episode_num": 0,
68
  "use_sde": false,
69
  "sde_sample_freq": -1,
70
+ "_current_progress_remaining": -0.004885333333333408,
71
  "ep_info_buffer": {
72
  ":type:": "<class 'collections.deque'>",
73
+ ":serialized:": "gAWVJRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIF7mnqztyckCUhpRSlIwBbJRL0IwBdJRHQKTXYSzPa+N1fZQoaAZoCWgPQwj51of1hshwQJSGlFKUaBVL0GgWR0Ck13Xbuc+adX2UKGgGaAloD0MIi3H+JtTFc0CUhpRSlGgVS+1oFkdApNfaFEiMYXV9lChoBmgJaA9DCDlkA+lisHFAlIaUUpRoFUu4aBZHQKTX7oV2zOZ1fZQoaAZoCWgPQwj3Oqkvi99wQJSGlFKUaBVLvmgWR0Ck1/8BdUsGdX2UKGgGaAloD0MId/cA3ZeNcECUhpRSlGgVS9BoFkdApNgJ9Vmz0HV9lChoBmgJaA9DCK33G+049G9AlIaUUpRoFUvKaBZHQKTYO89Oh011fZQoaAZoCWgPQwjWAKWhhrZzQJSGlFKUaBVL7WgWR0Ck2JXJYDDCdX2UKGgGaAloD0MIHAsKg7KScECUhpRSlGgVTQkBaBZHQKTYvUGVzIV1fZQoaAZoCWgPQwhkyoegasNyQJSGlFKUaBVL2GgWR0Ck2N3yI55rdX2UKGgGaAloD0MIILb0aGpdcECUhpRSlGgVS8ZoFkdApNkWaScLB3V9lChoBmgJaA9DCIxNK4WAanFAlIaUUpRoFUvVaBZHQKTZJfShJy11fZQoaAZoCWgPQwgxPzc0ZYlzQJSGlFKUaBVL7GgWR0Ck2Xl3Y+SsdX2UKGgGaAloD0MIxFp8CsDNcUCUhpRSlGgVS+BoFkdApNmb5ftx/HV9lChoBmgJaA9DCMu+K4J/NHBAlIaUUpRoFUvQaBZHQKTZpBrN4aB1fZQoaAZoCWgPQwjpLLMIBT5xQJSGlFKUaBVL42gWR0Ck2bxL0z0pdX2UKGgGaAloD0MIJsPxfAbBckCUhpRSlGgVS9loFkdApNnYNPP9k3V9lChoBmgJaA9DCPPMy2H3SnJAlIaUUpRoFUvIaBZHQKTaN8IAwPB1fZQoaAZoCWgPQwiF7/0NmjVzQJSGlFKUaBVL4GgWR0Ck2lcbzbvgdX2UKGgGaAloD0MIO8JpwcsZckCUhpRSlGgVS9toFkdApNpc45tFa3V9lChoBmgJaA9DCILlCBlI93BAlIaUUpRoFUvKaBZHQKTafiobXH11fZQoaAZoCWgPQwhkyRzLO3FxQJSGlFKUaBVL3WgWR0Ck2n6mXPZ7dX2UKGgGaAloD0MIkPeqlYlIckCUhpRSlGgVS9ZoFkdApNtFOEdvKnV9lChoBmgJaA9DCEvNHmhF7HJAlIaUUpRoFUvxaBZHQKTbTStNi6R1fZQoaAZoCWgPQwgyBADH3gtyQJSGlFKUaBVLwWgWR0Ck21h0ZFXrdX2UKGgGaAloD0MIbXAi+rUdckCUhpRSlGgVS+poFkdApNtiWszVMHV9lChoBmgJaA9DCG9IowJnLHNAlIaUUpRoFUvPaBZHQKTbdC0ngHh1fZQoaAZoCWgPQwidL/ZefJZwQJSGlFKUaBVLv2gWR0Ck26Z8KG+LdX2UKGgGaAloD0MIDtdqD/tZcUCUhpRSlGgVS9NoFkdApNwrdvbXYnV9lChoBmgJaA9DCMaoa+09KXFAlIaUUpRoFUvcaBZHQKTcMb1AZ891fZQoaAZoCWgPQwgcfcwHRDh0QJSGlFKUaBVL5WgWR0Ck3EVDrqt6dX2UKGgGaAloD0MIrp/+syaLckCUhpRSlGgVS99oFkdApNz0+RoysXV9lChoBmgJaA9DCOY9zjRhvm9AlIaUUpRoFUvQaBZHQKTc9Fl05lx1fZQoaAZoCWgPQwhUbqKWJuRxQJSGlFKUaBVL9mgWR0Ck5wFCb+cZdX2UKGgGaAloD0MI6Q5iZ0qcckCUhpRSlGgVS+VoFkdApOcbCk43m3V9lChoBmgJaA9DCDULtDsko3NAlIaUUpRoFUv0aBZHQKTnI3nZCfJ1fZQoaAZoCWgPQwgG8YEdf1dwQJSGlFKUaBVLw2gWR0Ck56kB0ZFYdX2UKGgGaAloD0MIE0ceiCwRckCUhpRSlGgVTVUBaBZHQKTnx5cC5mR1fZQoaAZoCWgPQwgTC3xFt3NwQJSGlFKUaBVL12gWR0Ck582UbDMvdX2UKGgGaAloD0MIndoZpraWb0CUhpRSlGgVS9hoFkdApOfXgpBomHV9lChoBmgJaA9DCPiMRGiEb3FAlIaUUpRoFUvZaBZHQKTn474i5d51fZQoaAZoCWgPQwjknq7uWI5xQJSGlFKUaBVL02gWR0Ck5+p+DvmYdX2UKGgGaAloD0MIzCkBMUnEckCUhpRSlGgVS/JoFkdApOh+PLgXM3V9lChoBmgJaA9DCLDJGvWQn29AlIaUUpRoFUvTaBZHQKTonhz/6wd1fZQoaAZoCWgPQwjrOel947JyQJSGlFKUaBVL5GgWR0Ck6NOR1X/6dX2UKGgGaAloD0MIrBkZ5G58ckCUhpRSlGgVS+ZoFkdApOjtmz0HyHV9lChoBmgJaA9DCFq9w+2QlnBAlIaUUpRoFUuwaBZHQKTo+GeMAFR1fZQoaAZoCWgPQwgct5ifG+JxQJSGlFKUaBVLzWgWR0Ck6ZglF+d9dX2UKGgGaAloD0MIYCAIkCFXcECUhpRSlGgVS9loFkdApOnL+JgssnV9lChoBmgJaA9DCAPQKF36MnBAlIaUUpRoFUvyaBZHQKTp0ewLVnV1fZQoaAZoCWgPQwj36A33ETFyQJSGlFKUaBVL7WgWR0Ck6evvjOs1dX2UKGgGaAloD0MIDOVEuworcUCUhpRSlGgVS7ZoFkdApOoiBZpztHV9lChoBmgJaA9DCLH9ZIxPbnFAlIaUUpRoFUu6aBZHQKTqNQMx46h1fZQoaAZoCWgPQwhgHccPFTdxQJSGlFKUaBVLzWgWR0Ck6lMefZmJdX2UKGgGaAloD0MI0QfL2FDPc0CUhpRSlGgVS9loFkdApOpw02tMf3V9lChoBmgJaA9DCL01sFXC0HFAlIaUUpRoFUvqaBZHQKTqhwnYxtZ1fZQoaAZoCWgPQwg7/3bZb59wQJSGlFKUaBVLwWgWR0Ck6v9BjWkKdX2UKGgGaAloD0MIclMDzWfIckCUhpRSlGgVS9VoFkdApOsccyWRinV9lChoBmgJaA9DCDXs98Q6TXRAlIaUUpRoFUvZaBZHQKTrjGNJe3R1fZQoaAZoCWgPQwhaY9AJ4WlyQJSGlFKUaBVL1GgWR0Ck65gTZg5SdX2UKGgGaAloD0MI1H/W/LhsckCUhpRSlGgVS7poFkdApOvzfUF0P3V9lChoBmgJaA9DCL76eOj7dHNAlIaUUpRoFUvRaBZHQKTsf5Y5ksl1fZQoaAZoCWgPQwjIztvYbONzQJSGlFKUaBVL1GgWR0Ck7IRgy/KydX2UKGgGaAloD0MI0sPQ6uQ6b0CUhpRSlGgVS8xoFkdApOzcIiTt9nV9lChoBmgJaA9DCECKOnMPzW5AlIaUUpRoFUvRaBZHQKTs2ZsKsuF1fZQoaAZoCWgPQwiveysSE2BPQJSGlFKUaBVLvGgWR0Ck7QTL4etCdX2UKGgGaAloD0MIZ9MRwE1xc0CUhpRSlGgVS/BoFkdApO0Lpkf9xnV9lChoBmgJaA9DCLWHvVBAsGNAlIaUUpRoFU3oA2gWR0Ck7RVtGd7OdX2UKGgGaAloD0MIED//PbgkcUCUhpRSlGgVS8xoFkdApO0fhybQTnV9lChoBmgJaA9DCEOQgxKmrHJAlIaUUpRoFUvgaBZHQKTtOqS5iEx1fZQoaAZoCWgPQwiNKVjjLBVxQJSGlFKUaBVLt2gWR0Ck7WjA8B+4dX2UKGgGaAloD0MI+daH9cZCckCUhpRSlGgVS/5oFkdApO50TpPhynV9lChoBmgJaA9DCM5PcRx47XBAlIaUUpRoFUvcaBZHQKTucozeoDR1fZQoaAZoCWgPQwjTEiuj0c1xQJSGlFKUaBVL4WgWR0Ck7o4x+KCQdX2UKGgGaAloD0MIYtf2dssncUCUhpRSlGgVS85oFkdApO6lqHoHLXV9lChoBmgJaA9DCG4UWWvocXJAlIaUUpRoFUvOaBZHQKTvJhOP/711fZQoaAZoCWgPQwj7IwwDltBtQJSGlFKUaBVL0GgWR0Ck74NUn5SFdX2UKGgGaAloD0MIqS7gZca5ckCUhpRSlGgVS+toFkdApO+MvkBCD3V9lChoBmgJaA9DCIRjlj1JZHFAlIaUUpRoFUvGaBZHQKTvka86FM91fZQoaAZoCWgPQwiF61G4Xl9wQJSGlFKUaBVLx2gWR0Ck76px//eddX2UKGgGaAloD0MIq+l6omvkcUCUhpRSlGgVS+xoFkdApO/lLrX18XV9lChoBmgJaA9DCDqVDACVxHFAlIaUUpRoFUvnaBZHQKTv+JQcghd1fZQoaAZoCWgPQwgr2bERCDdyQJSGlFKUaBVL32gWR0Ck8Ba/IsAedX2UKGgGaAloD0MI+pl63aKicECUhpRSlGgVS9RoFkdApPAoM4LkS3V9lChoBmgJaA9DCD19BP7wLnJAlIaUUpRoFUv1aBZHQKTwMRAbADd1fZQoaAZoCWgPQwg83XniebBxQJSGlFKUaBVLymgWR0Ck8Qba7EpBdX2UKGgGaAloD0MIxVVl39Xoc0CUhpRSlGgVS9xoFkdApPFEcdYGMXV9lChoBmgJaA9DCBAjhEcbQnFAlIaUUpRoFUvraBZHQKTxmLyc0+F1fZQoaAZoCWgPQwjZBYNrbrZzQJSGlFKUaBVNCAFoFkdApPIr4DcM3XV9lChoBmgJaA9DCKq53GCotHFAlIaUUpRoFUvGaBZHQKTyOla8pTd1fZQoaAZoCWgPQwilMVpHlcVyQJSGlFKUaBVL42gWR0Ck8pcU21lYdX2UKGgGaAloD0MIU14robsbcECUhpRSlGgVS+loFkdApPK3ZCfHxXV9lChoBmgJaA9DCFitTPilkHNAlIaUUpRoFUvNaBZHQKTyyFY+0PZ1fZQoaAZoCWgPQwj6fJQR111yQJSGlFKUaBVL0GgWR0Ck8vVuR9w4dX2UKGgGaAloD0MItoR80HNlckCUhpRSlGgVTRwBaBZHQKTzCZOSGJx1fZQoaAZoCWgPQwiiXYWUHzRtQJSGlFKUaBVNAgFoFkdApPMtYbKif3V9lChoBmgJaA9DCDJXBtWGhHFAlIaUUpRoFUvgaBZHQKTzSby6MBJ1fZQoaAZoCWgPQwhUc7nB0KlzQJSGlFKUaBVL/2gWR0Ck81xiw0O3dX2UKGgGaAloD0MIoRSt3EtKcECUhpRSlGgVTYwDaBZHQKTznNfw7T51fZQoaAZoCWgPQwjXicvxiuFxQJSGlFKUaBVNAAFoFkdApPOkEidJ8XVlLg=="
74
  },
75
  "ep_success_buffer": {
76
  ":type:": "<class 'collections.deque'>",
77
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
78
  },
79
+ "_n_updates": 736,
80
  "n_steps": 1024,
81
  "gamma": 0.999,
82
  "gae_lambda": 0.98,
 
87
  "n_epochs": 4,
88
  "clip_range": {
89
  ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
91
  },
92
  "clip_range_vf": null,
93
  "normalize_advantage": true,
ppo-LunarLander-v2/policy.optimizer.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:92be6258b7eec612085640d6293bbfb8fc909ac4288a383f7b60ffd66c4d5d94
3
  size 87929
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ae4f0044b275b6603469de357059a30e74755d613bd83809c65e7876d3c2e752
3
  size 87929
ppo-LunarLander-v2/policy.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:4e2e258bdf49447e9b301ef56dee8bf296585cdf17a35464fb2d68fdf117fae0
3
- size 43201
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:19d7aaf4ee1a80d0855f7593a0ec50d5b8ec324169cd3049c48ac8583f0f72b2
3
+ size 43393
ppo-LunarLander-v2/system_info.txt CHANGED
@@ -1,7 +1,7 @@
1
- OS: Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022
2
- Python: 3.8.16
3
- Stable-Baselines3: 1.6.2
4
- PyTorch: 1.13.0+cu116
5
- GPU Enabled: True
6
- Numpy: 1.21.6
7
- Gym: 0.21.0
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.27 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.16
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.0+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.21.6
7
+ - Gym: 0.21.0
replay.mp4 CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
 
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": 196.23474618175538, "std_reward": 85.75911117232282, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-12-12T18:35:05.358272"}
 
1
+ {"mean_reward": 279.90970584706963, "std_reward": 22.58542455756539, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-14T16:42:54.161450"}