a2c-PandaReachDense-v2 / config.json
msgerasyov's picture
Initial commit
5170e49
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f33bc4a6430>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f33bc4a81e0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 768672, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1674029440836931667, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAALGrvzk8jD8a0qE/LfyEvcvfoT/yb9y/i+GgP5jG0r6oKq2/GD5cv/u3+j3JQ7Q+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAVb+tv9PHhz9zi5s/PDwau0laqj9x1Ny/+VGuP+36x74SrbG/tgZZv63cQz0JT7I+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAAAsau/OTyMPxrSoT81OY8968WOOieIWD0t/IS9y9+hP/Jv3L+2wpQ9U8Zmvk6YqD2L4aA/mMbSvqgqrb+aD2A+erA6PeL0pD4YPly/+7f6PclDtD4uDhA9IJLsu7FjEj6UaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[-1.3413391 1.0955878 1.2642243 ]\n [-0.06493411 1.2646421 -1.7221663 ]\n [ 1.256883 -0.4116714 -1.3528643 ]\n [-0.8603225 0.12242123 0.35207966]]", "desired_goal": "[[-1.3574015 1.0607857 1.2151932 ]\n [-0.00235344 1.3308803 -1.7252332 ]\n [ 1.3618766 -0.3905863 -1.3880942 ]\n [-0.84775865 0.04781787 0.34825924]]", "observation": "[[-1.3413391e+00 1.0955878e+00 1.2642243e+00 6.9933333e-02\n 1.0892724e-03 5.2864220e-02]\n [-6.4934112e-02 1.2646421e+00 -1.7221663e+00 7.2637007e-02\n -2.2536592e-01 8.2321748e-02]\n [ 1.2568830e+00 -4.1167140e-01 -1.3528643e+00 2.1880952e-01\n 4.5578457e-02 3.2218081e-01]\n [-8.6032248e-01 1.2242123e-01 3.5207966e-01 3.5169773e-02\n -7.2195679e-03 1.4295842e-01]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAABQtrPI4Urrworlg9I9JwvG7S8z0z5BI+jy4BPlAhnj1CEE0+LNmzvKdVTj0YgIM+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.01434589 -0.02125004 0.05290046]\n [-0.01469854 0.11905371 0.14344864]\n [ 0.12615417 0.07721198 0.20025733]\n [-0.02195414 0.05037465 0.25683665]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.23132799999999998, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIixu3mJ8b+b+UhpRSlIwBbJRLMowBdJRHQKBHsLeANG51fZQoaAZoCWgPQwg7qpog6j7xv5SGlFKUaBVLMmgWR0CgR2hmXgLrdX2UKGgGaAloD0MINo/DYP6K4L+UhpRSlGgVSzJoFkdAoEcs14xDcHV9lChoBmgJaA9DCFg5tMh2vu6/lIaUUpRoFUsyaBZHQKBG7Y3eenR1fZQoaAZoCWgPQwjM7PMY5Znuv5SGlFKUaBVLMmgWR0CgSO1Aqur7dX2UKGgGaAloD0MItJJWfENh7b+UhpRSlGgVSzJoFkdAoEik4xUNrnV9lChoBmgJaA9DCAN64c6FEfa/lIaUUpRoFUsyaBZHQKBIaUyHmA91fZQoaAZoCWgPQwgxz0pa8Y3tv5SGlFKUaBVLMmgWR0CgSCq46Oo6dX2UKGgGaAloD0MIFFtB0xKr6r+UhpRSlGgVSzJoFkdAoEoCkGiYcHV9lChoBmgJaA9DCI8bfjfdsuK/lIaUUpRoFUsyaBZHQKBJuiVSn+B1fZQoaAZoCWgPQwgnSkIibWPyv5SGlFKUaBVLMmgWR0CgSX6PKdQPdX2UKGgGaAloD0MIF35wPnWs7L+UhpRSlGgVSzJoFkdAoEk/RJEpiXV9lChoBmgJaA9DCBtoPuduF/C/lIaUUpRoFUsyaBZHQKBLDqYZ2p11fZQoaAZoCWgPQwgtQUZAhaPuv5SGlFKUaBVLMmgWR0CgSsZT6zmfdX2UKGgGaAloD0MIoOHNGryv17+UhpRSlGgVSzJoFkdAoEqKvcJtznV9lChoBmgJaA9DCPIk6ZrJN/m/lIaUUpRoFUsyaBZHQKBKS1w5vLp1fZQoaAZoCWgPQwh5XFSLiOLpv5SGlFKUaBVLMmgWR0CgTCE078vVdX2UKGgGaAloD0MIRfC/lexY8L+UhpRSlGgVSzJoFkdAoEvY1ejVQXV9lChoBmgJaA9DCLzK2qZ4XOG/lIaUUpRoFUsyaBZHQKBLnTjvNNd1fZQoaAZoCWgPQwh5BDdStojzv5SGlFKUaBVLMmgWR0CgS13mmtQsdX2UKGgGaAloD0MIjEzAr5Ek3r+UhpRSlGgVSzJoFkdAoE1erQw9JXV9lChoBmgJaA9DCGnJ42n5ge2/lIaUUpRoFUsyaBZHQKBNFgb6xgR1fZQoaAZoCWgPQwhgBmNEohD2v5SGlFKUaBVLMmgWR0CgTNs9bHIZdX2UKGgGaAloD0MIyVaXUwJi67+UhpRSlGgVSzJoFkdAoEyb19ORDHV9lChoBmgJaA9DCO53KAr0ieO/lIaUUpRoFUsyaBZHQKBOeuRLbpN1fZQoaAZoCWgPQwh1IsFUM2vcv5SGlFKUaBVLMmgWR0CgTjKIJqqPdX2UKGgGaAloD0MIyXTo9Lyb47+UhpRSlGgVSzJoFkdAoE329WZJCnV9lChoBmgJaA9DCDwzwXCu4fG/lIaUUpRoFUsyaBZHQKBNt5HEuQJ1fZQoaAZoCWgPQwiHwJFAg03kv5SGlFKUaBVLMmgWR0CgT42w3YL9dX2UKGgGaAloD0MI7C5QUmAB6L+UhpRSlGgVSzJoFkdAoE9FK02LpHV9lChoBmgJaA9DCH2XUpeM4+m/lIaUUpRoFUsyaBZHQKBPCYpDu0F1fZQoaAZoCWgPQwiwyK8fYkP4v5SGlFKUaBVLMmgWR0CgTso9s7+2dX2UKGgGaAloD0MI3UPC9/6G8r+UhpRSlGgVSzJoFkdAoFCY6+36RHV9lChoBmgJaA9DCMKKU62F2ei/lIaUUpRoFUsyaBZHQKBQUJGe+VV1fZQoaAZoCWgPQwhDBBxClRruv5SGlFKUaBVLMmgWR0CgUBT0HyEtdX2UKGgGaAloD0MIAWn/A6yV9L+UhpRSlGgVSzJoFkdAoE/Ve+mFanV9lChoBmgJaA9DCM7hWu1hL9m/lIaUUpRoFUsyaBZHQKBRoimEXch1fZQoaAZoCWgPQwire2Rz1fz9v5SGlFKUaBVLMmgWR0CgUVl7tzCDdX2UKGgGaAloD0MINV66SQzC8r+UhpRSlGgVSzJoFkdAoFEd6w+t83V9lChoBmgJaA9DCJRMTu0M0+i/lIaUUpRoFUsyaBZHQKBQ3p9JBgN1fZQoaAZoCWgPQwjg8lgzMsjmv5SGlFKUaBVLMmgWR0CgUrHC4z7/dX2UKGgGaAloD0MIdqkR+pl667+UhpRSlGgVSzJoFkdAoFJpPsRg7nV9lChoBmgJaA9DCC0nofSFEOO/lIaUUpRoFUsyaBZHQKBSLa6BiCt1fZQoaAZoCWgPQwgEIO7qVWTwv5SGlFKUaBVLMmgWR0CgUe5oXbdrdX2UKGgGaAloD0MIzEV8J2a957+UhpRSlGgVSzJoFkdAoFPFgtvn83V9lChoBmgJaA9DCOW1ErpLYvW/lIaUUpRoFUsyaBZHQKBTfTSb6P91fZQoaAZoCWgPQwjQmEnUC77uv5SGlFKUaBVLMmgWR0CgU0F5GBnSdX2UKGgGaAloD0MIJ07udyiK6L+UhpRSlGgVSzJoFkdAoFMCNjslcHV9lChoBmgJaA9DCOYIGcizS/W/lIaUUpRoFUsyaBZHQKBUz/Ue+251fZQoaAZoCWgPQwgUWWsotRfnv5SGlFKUaBVLMmgWR0CgVIeOn2qUdX2UKGgGaAloD0MIFkz8UdTZ97+UhpRSlGgVSzJoFkdAoFRL19ORDHV9lChoBmgJaA9DCPqa5bLRufW/lIaUUpRoFUsyaBZHQKBUDH7P6bh1fZQoaAZoCWgPQwhaLEXylcDvv5SGlFKUaBVLMmgWR0CgVgt21UlzdX2UKGgGaAloD0MIn67uWGwT+b+UhpRSlGgVSzJoFkdAoFXD5IpYtHV9lChoBmgJaA9DCOId4EkLV/O/lIaUUpRoFUsyaBZHQKBViFA3T/h1fZQoaAZoCWgPQwjBb0OM1/z1v5SGlFKUaBVLMmgWR0CgVUi2MKkVdX2UKGgGaAloD0MIboeGxahr07+UhpRSlGgVSzJoFkdAoFce4Cp3o3V9lChoBmgJaA9DCKw41VqYhei/lIaUUpRoFUsyaBZHQKBW1lDneSB1fZQoaAZoCWgPQwiWJTrLLALwv5SGlFKUaBVLMmgWR0CgVpq/VRUFdX2UKGgGaAloD0MIBabTug3q8L+UhpRSlGgVSzJoFkdAoFZbcO9WZXV9lChoBmgJaA9DCMDN4sXCkOO/lIaUUpRoFUsyaBZHQKBYLsiSq2l1fZQoaAZoCWgPQwhgzJasinDhv5SGlFKUaBVLMmgWR0CgV+ZtNzsAdX2UKGgGaAloD0MIqDej5qvk5r+UhpRSlGgVSzJoFkdAoFeq2fChvnV9lChoBmgJaA9DCJQvaCEBI+G/lIaUUpRoFUsyaBZHQKBXa3d9Dx91fZQoaAZoCWgPQwhAFqJD4Ejrv5SGlFKUaBVLMmgWR0CgWWlxXGOudX2UKGgGaAloD0MI02achqjC3r+UhpRSlGgVSzJoFkdAoFkhE8aGYnV9lChoBmgJaA9DCGL5823BUtu/lIaUUpRoFUsyaBZHQKBY5WXkYGd1fZQoaAZoCWgPQwif5Xlwd1bnv5SGlFKUaBVLMmgWR0CgWKauOjqOdX2UKGgGaAloD0MIVyQmqOHb47+UhpRSlGgVSzJoFkdAoFp/XqZ+hHV9lChoBmgJaA9DCHv3x3vVytq/lIaUUpRoFUsyaBZHQKBaNstTUAl1fZQoaAZoCWgPQwhtOZfiqrLwv5SGlFKUaBVLMmgWR0CgWfsP8Q7LdX2UKGgGaAloD0MIkuumlNdK5r+UhpRSlGgVSzJoFkdAoFm7kCFK03V9lChoBmgJaA9DCE61Fmahneu/lIaUUpRoFUsyaBZHQKBbj238XN11fZQoaAZoCWgPQwhan3JMFvfXv5SGlFKUaBVLMmgWR0CgW0b5M10ldX2UKGgGaAloD0MI1sQCX9Gt67+UhpRSlGgVSzJoFkdAoFsLVH4GlnV9lChoBmgJaA9DCCCWzRySWuy/lIaUUpRoFUsyaBZHQKBay+QEIPd1fZQoaAZoCWgPQwiLbOf7qfHmv5SGlFKUaBVLMmgWR0CgXKiVrylOdX2UKGgGaAloD0MIgczOoncq57+UhpRSlGgVSzJoFkdAoFxgdp7CznV9lChoBmgJaA9DCBiYFYp0P9+/lIaUUpRoFUsyaBZHQKBcJPwd8zB1fZQoaAZoCWgPQwiM8szLYffvv5SGlFKUaBVLMmgWR0CgW+XTd+G5dX2UKGgGaAloD0MIqTC2EOSg1L+UhpRSlGgVSzJoFkdAoF3cxsVLz3V9lChoBmgJaA9DCJrRj4ZT5tK/lIaUUpRoFUsyaBZHQKBdlLRrrPd1fZQoaAZoCWgPQwiqRxrc1hbsv5SGlFKUaBVLMmgWR0CgXVme+VTrdX2UKGgGaAloD0MIAMeePZep5r+UhpRSlGgVSzJoFkdAoF0antOVPnV9lChoBmgJaA9DCFaCxeHMr92/lIaUUpRoFUsyaBZHQKBe6WrwOON1fZQoaAZoCWgPQwiXrmAb8WTbv5SGlFKUaBVLMmgWR0CgXqDqfOD8dX2UKGgGaAloD0MIo3iVtU1x4r+UhpRSlGgVSzJoFkdAoF5lEsrd33V9lChoBmgJaA9DCKMjufyHdOi/lIaUUpRoFUsyaBZHQKBeJbYbsGB1fZQoaAZoCWgPQwjE0sCPaljxv5SGlFKUaBVLMmgWR0CgX/obwSamdX2UKGgGaAloD0MIGTkLe9oh+b+UhpRSlGgVSzJoFkdAoF+x0fYBeXV9lChoBmgJaA9DCO7QsBh1rfC/lIaUUpRoFUsyaBZHQKBfdlRP4211fZQoaAZoCWgPQwgXm1YKgdzmv5SGlFKUaBVLMmgWR0CgXzhHCoCNdX2UKGgGaAloD0MIgNjSo6me67+UhpRSlGgVSzJoFkdAoGEO7Bfrr3V9lChoBmgJaA9DCN4gWivaHOi/lIaUUpRoFUsyaBZHQKBgxotcv/R1fZQoaAZoCWgPQwiGHjF6bqHiv5SGlFKUaBVLMmgWR0CgYIrP+n63dX2UKGgGaAloD0MIdGIP7WOF7r+UhpRSlGgVSzJoFkdAoGBLh99c8nV9lChoBmgJaA9DCFlRg2kYPvS/lIaUUpRoFUsyaBZHQKBiJX5nDix1fZQoaAZoCWgPQwgEIO7qVWTov5SGlFKUaBVLMmgWR0CgYd0Jv5xjdX2UKGgGaAloD0MI6s2o+Sr587+UhpRSlGgVSzJoFkdAoGGhblijL3V9lChoBmgJaA9DCJ2cobjjzfS/lIaUUpRoFUsyaBZHQKBhYhouf291ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 24021, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}