msgerasyov commited on
Commit
33019b8
·
1 Parent(s): e6007af

Initial commit

Browse files
.gitattributes CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
35
+ replay.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - AntBulletEnv-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: AntBulletEnv-v0
16
+ type: AntBulletEnv-v0
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 1189.62 +/- 486.75
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **AntBulletEnv-v0**
25
+ This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-AntBulletEnv-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4d2819ca08442f01ef001a06ec106b0a5315c3bea1a817039d98333cb231275c
3
+ size 129260
a2c-AntBulletEnv-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-AntBulletEnv-v0/data ADDED
@@ -0,0 +1,106 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f33bc4a2ca0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f33bc4a2d30>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f33bc4a2dc0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f33bc4a2e50>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f33bc4a2ee0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f33bc4a2f70>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f33bc4a6040>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f33bc4a60d0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f33bc4a6160>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f33bc4a61f0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f33bc4a6280>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f33bc4a6310>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7f33bc49af00>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {
24
+ ":type:": "<class 'dict'>",
25
+ ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
26
+ "log_std_init": -2,
27
+ "ortho_init": false,
28
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
29
+ "optimizer_kwargs": {
30
+ "alpha": 0.99,
31
+ "eps": 1e-05,
32
+ "weight_decay": 0
33
+ }
34
+ },
35
+ "observation_space": {
36
+ ":type:": "<class 'gym.spaces.box.Box'>",
37
+ ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
38
+ "dtype": "float32",
39
+ "_shape": [
40
+ 28
41
+ ],
42
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
43
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
44
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
45
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
46
+ "_np_random": null
47
+ },
48
+ "action_space": {
49
+ ":type:": "<class 'gym.spaces.box.Box'>",
50
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
51
+ "dtype": "float32",
52
+ "_shape": [
53
+ 8
54
+ ],
55
+ "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
56
+ "high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
57
+ "bounded_below": "[ True True True True True True True True]",
58
+ "bounded_above": "[ True True True True True True True True]",
59
+ "_np_random": null
60
+ },
61
+ "n_envs": 4,
62
+ "num_timesteps": 2000000,
63
+ "_total_timesteps": 2000000,
64
+ "_num_timesteps_at_start": 0,
65
+ "seed": null,
66
+ "action_noise": null,
67
+ "start_time": 1674022763422503915,
68
+ "learning_rate": 0.00096,
69
+ "tensorboard_log": null,
70
+ "lr_schedule": {
71
+ ":type:": "<class 'function'>",
72
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
73
+ },
74
+ "_last_obs": {
75
+ ":type:": "<class 'numpy.ndarray'>",
76
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAGFRED/fPJu/83Zkv3kZaz6fEs+/nwtFwABVPb8PWeI8XbKgPsajk78TGKG+4ftRwMuk0r4iS6S+ZqZ4Ppg0Qz+eS2O/RIrCP31Lnb4MzbW/Zbm0PsXPAD5TevO9B4UVQABpsL924b0+k1zvvxRqcr+DIOY/VH17vop95T5wCtU+pUVxv1DxMT+8kMm/iA+UvyVZXT8OJrw/VjyYPygguz3b9Mg/JS7bvG4sEj8G5ZQ8O7zVv4HZ/z2Xic++1l1wP6t5Xr9XjfQ+fO+Av3/Nkby6vzk/duG9PsDlCD8UanK/rA6UP0sl0T6hkDg/ZsTEvKS8c78O4WM+y3DRvjCajb9fTZU/lHgIvyIxAkB0PGu/du29v2Bqjz6ZDvO9SuiAv7O4yL+n8KI/bHYJP+ZC4j+gZzi/aTcnQIfwgL+plYi8ur85P06SLMDA5Qg/FGpyv2EMHT7hC6y/yK+lvyO3w77ry62/m/N8v49cZb4nVFm+bTLVvyVF4r8Neoi/J9D/uxrKqr9xdOi+bk6NveIttD/Pm54/wftZvq2EEz97mTbAnyJyvViQsb9/pJI/0BsPPwBpsL924b0+k1zvv2oshz+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
77
+ },
78
+ "_last_episode_starts": {
79
+ ":type:": "<class 'numpy.ndarray'>",
80
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
81
+ },
82
+ "_last_original_obs": {
83
+ ":type:": "<class 'numpy.ndarray'>",
84
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAADW54O2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAO0DVvAAAAADf++e/AAAAAKuS1b0AAAAAnDX1PwAAAAC/4uC9AAAAAHZ4+j8AAAAAYPijvAAAAABTdeO/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAASamYNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgC5CAT0AAAAAczHavwAAAACmeN88AAAAAF1o6z8AAAAA3lbtPQAAAACJpOo/AAAAAKomuL0AAAAAaJbhvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABFmXrYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBXThI9AAAAAKYV+r8AAAAAGbcHvgAAAAA2QQBAAAAAAJ2kFj0AAAAANAcBQAAAAAAn3oI8AAAAAGd82r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADyrVa2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAdbqsPAAAAAA1afS/AAAAANql670AAAAAqzn9PwAAAAB0fLY9AAAAABOX/D8AAAAA+7m0PQAAAAD6xti/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
85
+ },
86
+ "_episode_num": 0,
87
+ "use_sde": true,
88
+ "sde_sample_freq": -1,
89
+ "_current_progress_remaining": 0.0,
90
+ "ep_info_buffer": {
91
+ ":type:": "<class 'collections.deque'>",
92
+ ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJREkf/3nISMAWyUTegDjAF0lEdAp5VJxaPjn3V9lChoBkdAloOy1E3KjmgHTegDaAhHQKeWDzbvgFZ1fZQoaAZHQJEFtiDujRFoB03oA2gIR0CnmO1CXyAhdX2UKGgGR0CW0qyXD3ueaAdN6ANoCEdAp5xxZwGW2XV9lChoBkdAkkzlCswL3WgHTegDaAhHQKeh5FAE+xJ1fZQoaAZHQJMvzpX6qKhoB03oA2gIR0CnoqM/yGzsdX2UKGgGR0CVKrX7tRekaAdN6ANoCEdAp6V0e+23KHV9lChoBkdAlDDwxvegtmgHTegDaAhHQKeo0O5J9Rd1fZQoaAZHQJQoMmgJ1JVoB03oA2gIR0CnrhQ+t8u0dX2UKGgGR0CWn1/R3NcGaAdN6ANoCEdAp67UNFz+33V9lChoBkdAkpoRKUVzqGgHTegDaAhHQKexo2VmjCZ1fZQoaAZHQJgsKWdEsrdoB03oA2gIR0CntRILPUrkdX2UKGgGR0CSc2zKcNH6aAdN6ANoCEdAp7pNzySV4XV9lChoBkdAk+E35N47imgHTegDaAhHQKe7DVy3kPt1fZQoaAZHQJhaOc7QswtoB03oA2gIR0Cnvgk6tDD1dX2UKGgGR0CWY7C/47A+aAdN6ANoCEdAp8Fi9M9KVnV9lChoBkdAmBcpnL7oCGgHTegDaAhHQKfGqCTUy591fZQoaAZHQJc2VINEw35oB03oA2gIR0Cnx25+H8CQdX2UKGgGR0CWBHUW2w3YaAdN6ANoCEdAp8o/3UQTVXV9lChoBkdAkom0+s5n12gHTegDaAhHQKfNuJTl1bJ1fZQoaAZHQJDG82l2vB9oB03oA2gIR0Cn0wwg1WKedX2UKGgGR0CUiKWSU1Q7aAdN6ANoCEdAp9PGx6fJ3nV9lChoBkdAlR2QGbCrLmgHTegDaAhHQKfWkNQTEit1fZQoaAZHQJWg6XXyy2RoB03oA2gIR0Cn2fDkdV/+dX2UKGgGR0CU4u1dxAB1aAdN6ANoCEdAp99LIV/MGHV9lChoBkdAlV1S3ocJdGgHTegDaAhHQKfgDhfjS5R1fZQoaAZHQJX8DGgi/wloB03oA2gIR0Cn4tRpDeCTdX2UKGgGR0CWF5ndO6/ZaAdN6ANoCEdAp+ZJZB9kSXV9lChoBkdAlNxLamGdqmgHTegDaAhHQKfrejCYTkB1fZQoaAZHQJYPFu76Hj9oB03oA2gIR0Cn7Dy3b212dX2UKGgGR0CUgFy+pOvdaAdN6ANoCEdAp+8LBGhEjXV9lChoBkdAlB0K8pTdcmgHTegDaAhHQKfydzRx95R1fZQoaAZHQJRd6J0nw5NoB03oA2gIR0Cn98MGHHmzdX2UKGgGR0CVGh7Ackt3aAdN6ANoCEdAp/iG8scyWXV9lChoBkdAlLOnKKYRd2gHTegDaAhHQKf7ex1PnCB1fZQoaAZHQJZ3YKBun/FoB03oA2gIR0Cn/sAbhm5EdX2UKGgGR0CUpVvW6K+BaAdN6ANoCEdAqAQdmHxjKHV9lChoBkdAlA1BHkLhJmgHTegDaAhHQKgE3ikO7QN1fZQoaAZHQJSjpu2qkuZoB03oA2gIR0CoB7oWpIczdX2UKGgGR0CUd8iZfD1oaAdN6ANoCEdAqAsOh9LHuXV9lChoBkdAksXuRDCxeWgHTegDaAhHQKgQZzcRDkV1fZQoaAZHQJeykd2gWadoB03oA2gIR0CoESffXPJJdX2UKGgGR0CUkD0A93bFaAdN6ANoCEdAqBUXqu8sc3V9lChoBkdAlT4o4yXUpmgHTegDaAhHQKgaXZh8Yyh1fZQoaAZHQJW8eDFqBVdoB03oA2gIR0CoH9hkI5YHdX2UKGgGR0CXPmKhL5ARaAdN6ANoCEdAqCCeb1AZ9HV9lChoBkdAlIrJowmE5GgHTegDaAhHQKgjbwVCXyB1fZQoaAZHQJNlCt1ZDAtoB03oA2gIR0CoJsD5CWu6dX2UKGgGR0CSvK4TsY2saAdN6ANoCEdAqCv7i++M63V9lChoBkdAj4G8S5AhS2gHTegDaAhHQKgsxhvR7Z51fZQoaAZHQJbc9cZ9/jNoB03oA2gIR0CoL5i5uqFRdX2UKGgGR0CT0J2dd3SsaAdN6ANoCEdAqDMF2xIJ7nV9lChoBkdAleAe4XoC+2gHTegDaAhHQKg4WZBLPD51fZQoaAZHQJJQAMOPNmloB03oA2gIR0CoOR+9rXUZdX2UKGgGR0CUbwfdhy80aAdN6ANoCEdAqDvvbCaZyHV9lChoBkdAkmg78WKuS2gHTegDaAhHQKg/YydFvyd1fZQoaAZHQJXklYhdMTNoB03oA2gIR0CoRL2i+L3sdX2UKGgGR0CRYRCngpBpaAdN6ANoCEdAqEV+mBOHnHV9lChoBkdAlA/XMpw0f2gHTegDaAhHQKhITgwXZXd1fZQoaAZHQJOb8PsiSq5oB03oA2gIR0CoS6J79hqkdX2UKGgGR0CSFVq1gH/taAdN6ANoCEdAqFDgo/iYLXV9lChoBkdAlYJ7qQiiZmgHTegDaAhHQKhRnkGRmsh1fZQoaAZHQJIs3ndO6/ZoB03oA2gIR0CoVGDyWiUQdX2UKGgGR0CVImm4RVZLaAdN6ANoCEdAqFeu14Pf9HV9lChoBkdAlT25pi7TUmgHTegDaAhHQKhc7dWQwK11fZQoaAZHQJRu6PT5O8FoB03oA2gIR0CoXbM90RvndX2UKGgGR0CTxsw4sEq2aAdN6ANoCEdAqGCCJVKf4HV9lChoBkdAkdTHEhq0t2gHTegDaAhHQKhj4kcCHRF1fZQoaAZHQJfFtmRNh3JoB03oA2gIR0CoaR2mYSg5dX2UKGgGR0CR0thakhzOaAdN6ANoCEdAqGnjY7JXAHV9lChoBkdAlHyMNYr8SGgHTegDaAhHQKhstfFaSs91fZQoaAZHQJZrtFCswL5oB03oA2gIR0CocBT2WY4RdX2UKGgGR0CTSkafBeolaAdN6ANoCEdAqHV0IHC40HV9lChoBkdAlmM+aF23a2gHTegDaAhHQKh2On9ehPF1fZQoaAZHQJfeIX3xnWdoB03oA2gIR0CoeQLYoRZmdX2UKGgGR0CXCFXLNfPYaAdN6ANoCEdAqHxvSH/LknV9lChoBkdAmLBYduHerWgHTegDaAhHQKiBmngpBop1fZQoaAZHQJkdbS1E3KloB03oA2gIR0Cogl9Gqgh9dX2UKGgGR0CVB4LAYYR/aAdN6ANoCEdAqIUruQZGa3V9lChoBkdAllyRVAAyVWgHTegDaAhHQKiIl08NhE11fZQoaAZHQJbOIJXyRSxoB03oA2gIR0CojdsURFqjdX2UKGgGR0CWwgDWbwz+aAdN6ANoCEdAqI6n62v0RXV9lChoBkdAllO8jqv/zmgHTegDaAhHQKiRgEtdzGR1fZQoaAZHQJfKuvxH5JtoB03oA2gIR0ColNOPV/c4dX2UKGgGR0CWOKuiN83NaAdN6ANoCEdAqJofI2fkFXV9lChoBkdAlSVOh4+r2mgHTegDaAhHQKia4N70Fr51fZQoaAZHQJRfoR8MNMJoB03oA2gIR0ConapWNm16dX2UKGgGR0CXizW4EwFlaAdN6ANoCEdAqKEB40Mw13V9lChoBkdAlRzD3dsSCmgHTegDaAhHQKimTTgl4Tt1fZQoaAZHQJmjyNGViWpoB03oA2gIR0Copw74agmJdX2UKGgGR0CUHJ5DZ13daAdN6ANoCEdAqKnT0lJHy3V9lChoBkdAlcx5P/JeV2gHTegDaAhHQKitNtnf2sd1fZQoaAZHQJY/NUGVzIVoB03oA2gIR0CosqDXe3x4dX2UKGgGR0CZ70zUZvUCaAdN6ANoCEdAqLNn7Lt/nXV9lChoBkdAiosSVfNRnGgHTcECaAhHQKi2CmG/N7l1fZQoaAZHQJNGqmJm/WVoB03oA2gIR0CotkIBaLXMdX2UKGgGR0CXEzHt4RmLaAdN6ANoCEdAqL7rbeuV5nV9lChoBkdAlOeyzcAR02gHTegDaAhHQKi/tCYTkAB1fZQoaAZHQI6XXX9R77doB01KA2gIR0CowGkTYdyUdX2UKGgGR0CYkqkUKzAvaAdN6ANoCEdAqMKLua4MF3VlLg=="
93
+ },
94
+ "ep_success_buffer": {
95
+ ":type:": "<class 'collections.deque'>",
96
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
97
+ },
98
+ "_n_updates": 62500,
99
+ "n_steps": 8,
100
+ "gamma": 0.99,
101
+ "gae_lambda": 0.9,
102
+ "ent_coef": 0.0,
103
+ "vf_coef": 0.4,
104
+ "max_grad_norm": 0.5,
105
+ "normalize_advantage": false
106
+ }
a2c-AntBulletEnv-v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fc2632e886bb0b16d2a78f45338bb82203a8e2b62756787ddc49a2f329e244a8
3
+ size 56190
a2c-AntBulletEnv-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:64c0569f0b9a209c0e762b607e984bbbfbe6862abeb510d79008de948d05c5a2
3
+ size 56958
a2c-AntBulletEnv-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-AntBulletEnv-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.21.6
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f33bc4a2ca0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f33bc4a2d30>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f33bc4a2dc0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f33bc4a2e50>", "_build": "<function ActorCriticPolicy._build at 0x7f33bc4a2ee0>", "forward": "<function ActorCriticPolicy.forward at 0x7f33bc4a2f70>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f33bc4a6040>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f33bc4a60d0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f33bc4a6160>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f33bc4a61f0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f33bc4a6280>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f33bc4a6310>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f33bc49af00>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1674022763422503915, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAGFRED/fPJu/83Zkv3kZaz6fEs+/nwtFwABVPb8PWeI8XbKgPsajk78TGKG+4ftRwMuk0r4iS6S+ZqZ4Ppg0Qz+eS2O/RIrCP31Lnb4MzbW/Zbm0PsXPAD5TevO9B4UVQABpsL924b0+k1zvvxRqcr+DIOY/VH17vop95T5wCtU+pUVxv1DxMT+8kMm/iA+UvyVZXT8OJrw/VjyYPygguz3b9Mg/JS7bvG4sEj8G5ZQ8O7zVv4HZ/z2Xic++1l1wP6t5Xr9XjfQ+fO+Av3/Nkby6vzk/duG9PsDlCD8UanK/rA6UP0sl0T6hkDg/ZsTEvKS8c78O4WM+y3DRvjCajb9fTZU/lHgIvyIxAkB0PGu/du29v2Bqjz6ZDvO9SuiAv7O4yL+n8KI/bHYJP+ZC4j+gZzi/aTcnQIfwgL+plYi8ur85P06SLMDA5Qg/FGpyv2EMHT7hC6y/yK+lvyO3w77ry62/m/N8v49cZb4nVFm+bTLVvyVF4r8Neoi/J9D/uxrKqr9xdOi+bk6NveIttD/Pm54/wftZvq2EEz97mTbAnyJyvViQsb9/pJI/0BsPPwBpsL924b0+k1zvv2oshz+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAADW54O2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAO0DVvAAAAADf++e/AAAAAKuS1b0AAAAAnDX1PwAAAAC/4uC9AAAAAHZ4+j8AAAAAYPijvAAAAABTdeO/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAASamYNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgC5CAT0AAAAAczHavwAAAACmeN88AAAAAF1o6z8AAAAA3lbtPQAAAACJpOo/AAAAAKomuL0AAAAAaJbhvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABFmXrYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBXThI9AAAAAKYV+r8AAAAAGbcHvgAAAAA2QQBAAAAAAJ2kFj0AAAAANAcBQAAAAAAn3oI8AAAAAGd82r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADyrVa2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAdbqsPAAAAAA1afS/AAAAANql670AAAAAqzn9PwAAAAB0fLY9AAAAABOX/D8AAAAA+7m0PQAAAAD6xti/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJREkf/3nISMAWyUTegDjAF0lEdAp5VJxaPjn3V9lChoBkdAloOy1E3KjmgHTegDaAhHQKeWDzbvgFZ1fZQoaAZHQJEFtiDujRFoB03oA2gIR0CnmO1CXyAhdX2UKGgGR0CW0qyXD3ueaAdN6ANoCEdAp5xxZwGW2XV9lChoBkdAkkzlCswL3WgHTegDaAhHQKeh5FAE+xJ1fZQoaAZHQJMvzpX6qKhoB03oA2gIR0CnoqM/yGzsdX2UKGgGR0CVKrX7tRekaAdN6ANoCEdAp6V0e+23KHV9lChoBkdAlDDwxvegtmgHTegDaAhHQKeo0O5J9Rd1fZQoaAZHQJQoMmgJ1JVoB03oA2gIR0CnrhQ+t8u0dX2UKGgGR0CWn1/R3NcGaAdN6ANoCEdAp67UNFz+33V9lChoBkdAkpoRKUVzqGgHTegDaAhHQKexo2VmjCZ1fZQoaAZHQJgsKWdEsrdoB03oA2gIR0CntRILPUrkdX2UKGgGR0CSc2zKcNH6aAdN6ANoCEdAp7pNzySV4XV9lChoBkdAk+E35N47imgHTegDaAhHQKe7DVy3kPt1fZQoaAZHQJhaOc7QswtoB03oA2gIR0Cnvgk6tDD1dX2UKGgGR0CWY7C/47A+aAdN6ANoCEdAp8Fi9M9KVnV9lChoBkdAmBcpnL7oCGgHTegDaAhHQKfGqCTUy591fZQoaAZHQJc2VINEw35oB03oA2gIR0Cnx25+H8CQdX2UKGgGR0CWBHUW2w3YaAdN6ANoCEdAp8o/3UQTVXV9lChoBkdAkom0+s5n12gHTegDaAhHQKfNuJTl1bJ1fZQoaAZHQJDG82l2vB9oB03oA2gIR0Cn0wwg1WKedX2UKGgGR0CUiKWSU1Q7aAdN6ANoCEdAp9PGx6fJ3nV9lChoBkdAlR2QGbCrLmgHTegDaAhHQKfWkNQTEit1fZQoaAZHQJWg6XXyy2RoB03oA2gIR0Cn2fDkdV/+dX2UKGgGR0CU4u1dxAB1aAdN6ANoCEdAp99LIV/MGHV9lChoBkdAlV1S3ocJdGgHTegDaAhHQKfgDhfjS5R1fZQoaAZHQJX8DGgi/wloB03oA2gIR0Cn4tRpDeCTdX2UKGgGR0CWF5ndO6/ZaAdN6ANoCEdAp+ZJZB9kSXV9lChoBkdAlNxLamGdqmgHTegDaAhHQKfrejCYTkB1fZQoaAZHQJYPFu76Hj9oB03oA2gIR0Cn7Dy3b212dX2UKGgGR0CUgFy+pOvdaAdN6ANoCEdAp+8LBGhEjXV9lChoBkdAlB0K8pTdcmgHTegDaAhHQKfydzRx95R1fZQoaAZHQJRd6J0nw5NoB03oA2gIR0Cn98MGHHmzdX2UKGgGR0CVGh7Ackt3aAdN6ANoCEdAp/iG8scyWXV9lChoBkdAlLOnKKYRd2gHTegDaAhHQKf7ex1PnCB1fZQoaAZHQJZ3YKBun/FoB03oA2gIR0Cn/sAbhm5EdX2UKGgGR0CUpVvW6K+BaAdN6ANoCEdAqAQdmHxjKHV9lChoBkdAlA1BHkLhJmgHTegDaAhHQKgE3ikO7QN1fZQoaAZHQJSjpu2qkuZoB03oA2gIR0CoB7oWpIczdX2UKGgGR0CUd8iZfD1oaAdN6ANoCEdAqAsOh9LHuXV9lChoBkdAksXuRDCxeWgHTegDaAhHQKgQZzcRDkV1fZQoaAZHQJeykd2gWadoB03oA2gIR0CoESffXPJJdX2UKGgGR0CUkD0A93bFaAdN6ANoCEdAqBUXqu8sc3V9lChoBkdAlT4o4yXUpmgHTegDaAhHQKgaXZh8Yyh1fZQoaAZHQJW8eDFqBVdoB03oA2gIR0CoH9hkI5YHdX2UKGgGR0CXPmKhL5ARaAdN6ANoCEdAqCCeb1AZ9HV9lChoBkdAlIrJowmE5GgHTegDaAhHQKgjbwVCXyB1fZQoaAZHQJNlCt1ZDAtoB03oA2gIR0CoJsD5CWu6dX2UKGgGR0CSvK4TsY2saAdN6ANoCEdAqCv7i++M63V9lChoBkdAj4G8S5AhS2gHTegDaAhHQKgsxhvR7Z51fZQoaAZHQJbc9cZ9/jNoB03oA2gIR0CoL5i5uqFRdX2UKGgGR0CT0J2dd3SsaAdN6ANoCEdAqDMF2xIJ7nV9lChoBkdAleAe4XoC+2gHTegDaAhHQKg4WZBLPD51fZQoaAZHQJJQAMOPNmloB03oA2gIR0CoOR+9rXUZdX2UKGgGR0CUbwfdhy80aAdN6ANoCEdAqDvvbCaZyHV9lChoBkdAkmg78WKuS2gHTegDaAhHQKg/YydFvyd1fZQoaAZHQJXklYhdMTNoB03oA2gIR0CoRL2i+L3sdX2UKGgGR0CRYRCngpBpaAdN6ANoCEdAqEV+mBOHnHV9lChoBkdAlA/XMpw0f2gHTegDaAhHQKhITgwXZXd1fZQoaAZHQJOb8PsiSq5oB03oA2gIR0CoS6J79hqkdX2UKGgGR0CSFVq1gH/taAdN6ANoCEdAqFDgo/iYLXV9lChoBkdAlYJ7qQiiZmgHTegDaAhHQKhRnkGRmsh1fZQoaAZHQJIs3ndO6/ZoB03oA2gIR0CoVGDyWiUQdX2UKGgGR0CVImm4RVZLaAdN6ANoCEdAqFeu14Pf9HV9lChoBkdAlT25pi7TUmgHTegDaAhHQKhc7dWQwK11fZQoaAZHQJRu6PT5O8FoB03oA2gIR0CoXbM90RvndX2UKGgGR0CTxsw4sEq2aAdN6ANoCEdAqGCCJVKf4HV9lChoBkdAkdTHEhq0t2gHTegDaAhHQKhj4kcCHRF1fZQoaAZHQJfFtmRNh3JoB03oA2gIR0CoaR2mYSg5dX2UKGgGR0CR0thakhzOaAdN6ANoCEdAqGnjY7JXAHV9lChoBkdAlHyMNYr8SGgHTegDaAhHQKhstfFaSs91fZQoaAZHQJZrtFCswL5oB03oA2gIR0CocBT2WY4RdX2UKGgGR0CTSkafBeolaAdN6ANoCEdAqHV0IHC40HV9lChoBkdAlmM+aF23a2gHTegDaAhHQKh2On9ehPF1fZQoaAZHQJfeIX3xnWdoB03oA2gIR0CoeQLYoRZmdX2UKGgGR0CXCFXLNfPYaAdN6ANoCEdAqHxvSH/LknV9lChoBkdAmLBYduHerWgHTegDaAhHQKiBmngpBop1fZQoaAZHQJkdbS1E3KloB03oA2gIR0Cogl9Gqgh9dX2UKGgGR0CVB4LAYYR/aAdN6ANoCEdAqIUruQZGa3V9lChoBkdAllyRVAAyVWgHTegDaAhHQKiIl08NhE11fZQoaAZHQJbOIJXyRSxoB03oA2gIR0CojdsURFqjdX2UKGgGR0CWwgDWbwz+aAdN6ANoCEdAqI6n62v0RXV9lChoBkdAllO8jqv/zmgHTegDaAhHQKiRgEtdzGR1fZQoaAZHQJfKuvxH5JtoB03oA2gIR0ColNOPV/c4dX2UKGgGR0CWOKuiN83NaAdN6ANoCEdAqJofI2fkFXV9lChoBkdAlSVOh4+r2mgHTegDaAhHQKia4N70Fr51fZQoaAZHQJRfoR8MNMJoB03oA2gIR0ConapWNm16dX2UKGgGR0CXizW4EwFlaAdN6ANoCEdAqKEB40Mw13V9lChoBkdAlRzD3dsSCmgHTegDaAhHQKimTTgl4Tt1fZQoaAZHQJmjyNGViWpoB03oA2gIR0Copw74agmJdX2UKGgGR0CUHJ5DZ13daAdN6ANoCEdAqKnT0lJHy3V9lChoBkdAlcx5P/JeV2gHTegDaAhHQKitNtnf2sd1fZQoaAZHQJY/NUGVzIVoB03oA2gIR0CosqDXe3x4dX2UKGgGR0CZ70zUZvUCaAdN6ANoCEdAqLNn7Lt/nXV9lChoBkdAiosSVfNRnGgHTcECaAhHQKi2CmG/N7l1fZQoaAZHQJNGqmJm/WVoB03oA2gIR0CotkIBaLXMdX2UKGgGR0CXEzHt4RmLaAdN6ANoCEdAqL7rbeuV5nV9lChoBkdAlOeyzcAR02gHTegDaAhHQKi/tCYTkAB1fZQoaAZHQI6XXX9R77doB01KA2gIR0CowGkTYdyUdX2UKGgGR0CYkqkUKzAvaAdN6ANoCEdAqMKLua4MF3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e822afdf1eee317a50caf5839bdd811a1533a24449dc575967b133c3335e5a5f
3
+ size 1072441
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 1189.6231941569683, "std_reward": 486.75373685872347, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-18T07:12:43.281501"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:46ddc53d6e9fa3fd9f414fe082bc5874735a2a014d32e4725bb25942973f5aaf
3
+ size 2521