mrtuandao commited on
Commit
94347ba
·
verified ·
1 Parent(s): 23075fc

Model card auto-generated by SimpleTuner

Browse files
Files changed (1) hide show
  1. README.md +171 -0
README.md ADDED
@@ -0,0 +1,171 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: other
3
+ base_model: "flux/unknown-model"
4
+ tags:
5
+ - flux
6
+ - flux-diffusers
7
+ - text-to-image
8
+ - diffusers
9
+ - simpletuner
10
+ - not-for-all-audiences
11
+ - lora
12
+ - template:sd-lora
13
+ - lycoris
14
+ inference: true
15
+ widget:
16
+ - text: 'unconditional (blank prompt)'
17
+ parameters:
18
+ negative_prompt: 'blurry, cropped, ugly'
19
+ output:
20
+ url: ./assets/image_0_0.png
21
+ - text: 'A Simple Pencil sketch of Marilyn Monroe, showcasing her iconic smile and glamorous hairstyle. The shading captures the softness of her features and the elegance of her famous pose, framed by a hint of her signature wardrobe.'
22
+ parameters:
23
+ negative_prompt: 'blurry, cropped, ugly'
24
+ output:
25
+ url: ./assets/image_1_0.png
26
+ ---
27
+
28
+ # random
29
+
30
+ This is a LyCORIS adapter derived from [flux/unknown-model](https://huggingface.co/flux/unknown-model).
31
+
32
+
33
+ The main validation prompt used during training was:
34
+ ```
35
+ A Simple Pencil sketch of Marilyn Monroe, showcasing her iconic smile and glamorous hairstyle. The shading captures the softness of her features and the elegance of her famous pose, framed by a hint of her signature wardrobe.
36
+ ```
37
+
38
+
39
+ ## Validation settings
40
+ - CFG: `3.5`
41
+ - CFG Rescale: `0.0`
42
+ - Steps: `35`
43
+ - Sampler: `FlowMatchEulerDiscreteScheduler`
44
+ - Seed: `42`
45
+ - Resolution: `1024x1024`
46
+ - Skip-layer guidance:
47
+
48
+ Note: The validation settings are not necessarily the same as the [training settings](#training-settings).
49
+
50
+ You can find some example images in the following gallery:
51
+
52
+
53
+ <Gallery />
54
+
55
+ The text encoder **was not** trained.
56
+ You may reuse the base model text encoder for inference.
57
+
58
+
59
+ ## Training settings
60
+
61
+ - Training epochs: 1
62
+ - Training steps: 500
63
+ - Learning rate: 0.0001
64
+ - Learning rate schedule: polynomial
65
+ - Warmup steps: 100
66
+ - Max grad norm: 2.0
67
+ - Effective batch size: 1
68
+ - Micro-batch size: 1
69
+ - Gradient accumulation steps: 1
70
+ - Number of GPUs: 1
71
+ - Gradient checkpointing: True
72
+ - Prediction type: flow-matching (extra parameters=['shift=3', 'flux_guidance_mode=constant', 'flux_guidance_value=1.0', 'flow_matching_loss=compatible'])
73
+ - Optimizer: adamw_bf16
74
+ - Trainable parameter precision: Pure BF16
75
+ - Caption dropout probability: 10.0%
76
+
77
+
78
+ ### LyCORIS Config:
79
+ ```json
80
+ {
81
+ "algo": "lokr",
82
+ "multiplier": 1.0,
83
+ "linear_dim": 16,
84
+ "linear_alpha": 1,
85
+ "factor": 16,
86
+ "apply_preset": {
87
+ "target_module": [
88
+ "Attention",
89
+ "FeedForward"
90
+ ],
91
+ "module_algo_map": {
92
+ "Attention": {
93
+ "factor": 16
94
+ },
95
+ "FeedForward": {
96
+ "factor": 8
97
+ }
98
+ }
99
+ }
100
+ }
101
+ ```
102
+
103
+ ## Datasets
104
+
105
+ ### pencil-sketch-image
106
+ - Repeats: 10
107
+ - Total number of images: 31
108
+ - Total number of aspect buckets: 1
109
+ - Resolution: 1.048576 megapixels
110
+ - Cropped: True
111
+ - Crop style: random
112
+ - Crop aspect: square
113
+ - Used for regularisation data: No
114
+
115
+
116
+ ## Inference
117
+
118
+
119
+ ```python
120
+ import torch
121
+ from diffusers import DiffusionPipeline
122
+ from lycoris import create_lycoris_from_weights
123
+
124
+
125
+ def download_adapter(repo_id: str):
126
+ import os
127
+ from huggingface_hub import hf_hub_download
128
+ adapter_filename = "pytorch_lora_weights.safetensors"
129
+ cache_dir = os.environ.get('HF_PATH', os.path.expanduser('~/.cache/huggingface/hub/models'))
130
+ cleaned_adapter_path = repo_id.replace("/", "_").replace("\\", "_").replace(":", "_")
131
+ path_to_adapter = os.path.join(cache_dir, cleaned_adapter_path)
132
+ path_to_adapter_file = os.path.join(path_to_adapter, adapter_filename)
133
+ os.makedirs(path_to_adapter, exist_ok=True)
134
+ hf_hub_download(
135
+ repo_id=repo_id, filename=adapter_filename, local_dir=path_to_adapter
136
+ )
137
+
138
+ return path_to_adapter_file
139
+
140
+ model_id = '/workspace/FLUX.1-dev'
141
+ adapter_repo_id = 'mrtuandao/random'
142
+ adapter_filename = 'pytorch_lora_weights.safetensors'
143
+ adapter_file_path = download_adapter(repo_id=adapter_repo_id)
144
+ pipeline = DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.bfloat16) # loading directly in bf16
145
+ lora_scale = 1.0
146
+ wrapper, _ = create_lycoris_from_weights(lora_scale, adapter_file_path, pipeline.transformer)
147
+ wrapper.merge_to()
148
+
149
+ prompt = "A Simple Pencil sketch of Marilyn Monroe, showcasing her iconic smile and glamorous hairstyle. The shading captures the softness of her features and the elegance of her famous pose, framed by a hint of her signature wardrobe."
150
+
151
+
152
+ ## Optional: quantise the model to save on vram.
153
+ ## Note: The model was not quantised during training, so it is not necessary to quantise it during inference time.
154
+ #from optimum.quanto import quantize, freeze, qint8
155
+ #quantize(pipeline.transformer, weights=qint8)
156
+ #freeze(pipeline.transformer)
157
+
158
+ pipeline.to('cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu') # the pipeline is already in its target precision level
159
+ image = pipeline(
160
+ prompt=prompt,
161
+ num_inference_steps=35,
162
+ generator=torch.Generator(device='cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu').manual_seed(42),
163
+ width=1024,
164
+ height=1024,
165
+ guidance_scale=3.5,
166
+ ).images[0]
167
+ image.save("output.png", format="PNG")
168
+ ```
169
+
170
+
171
+