mrstarkng commited on
Commit
a5b3c61
·
verified ·
1 Parent(s): c1be601

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +40 -3
README.md CHANGED
@@ -1,3 +1,40 @@
1
- ---
2
- license: bsd-3-clause
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: bsd-3-clause
3
+ ---
4
+ # Hong Lou Meng Fine-tuned Model for Word Alignment
5
+
6
+ This repository contains a fine-tuned version of the **BERT multilingual model** (`bert-base-multilingual-cased`) on the **Hong Lou Meng** dataset for word alignment tasks. This model is fine-tuned using the [awesome-align](https://github.com/neulab/awesome-align) framework and is designed for Chinese-Vietnamese (Zh-Vn) alignment.
7
+
8
+ ## Model Details
9
+
10
+ - **Base Model:** `bert-base-multilingual-cased`
11
+ - **Fine-tuned Dataset:** Excerpts from the classic "Hong Lou Meng" novel, annotated with Chinese and Vietnamese sentence pairs.
12
+ - **Alignment Task:** Fine-tuned to align word pairs in parallel texts for translation and linguistic analysis.
13
+
14
+ ---
15
+
16
+ ## Example Usage
17
+
18
+ Below is an example of how to use this model for word alignment using the `transformers` library:
19
+
20
+ ```python
21
+ from transformers import AutoTokenizer, AutoModel
22
+ import torch
23
+
24
+ # Load model and tokenizer
25
+ model_name = "username/zh-vn-hongloumeng-align"
26
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
27
+ model = AutoModel.from_pretrained(model_name)
28
+
29
+ # Input sentences (Chinese and Vietnamese)
30
+ source_sentence = "第一回 甄士隱夢幻識通靈 賈雨村風塵懷閨秀"
31
+ target_sentence = "Hồi thứ nhất: Chân Sĩ Ẩn mộng ảo ngộ đá thiêng, Giả Vũ Thôn phong trần nhớ giai nhân."
32
+
33
+ # Tokenize inputs
34
+ inputs = tokenizer(source_sentence, target_sentence, return_tensors="pt", padding=True, truncation=True)
35
+
36
+ # Pass through model
37
+ outputs = model(**inputs)
38
+
39
+ # Further processing for alignment visualization or analysis would follow
40
+ print("Model outputs:", outputs)