File size: 1,517 Bytes
5047565
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
---
pipeline_tag: sentence-similarity
license: apache-2.0
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
- transformers
language:
- en
---

# kornwtp/ConGen-BERT-Small

This is a [SCT](https://github.com/mrpeerat/SCT) model: It maps sentences to a dense vector space and can be used for tasks like semantic search.



## Usage

Using this model becomes easy when you have [SCT](https://github.com/mrpeerat/SCT) installed:

```
pip install -U git+https://github.com/mrpeerat/SCT
```

Then you can use the model like this:

```python
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]

model = SentenceTransformer('mrp/SCT_BERT_Large')
embeddings = model.encode(sentences)
print(embeddings)
```



## Evaluation Results



For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [Semantic Textual Similarity](https://github.com/mrpeerat/SCT#main-results---sts)


## Citing & Authors

```bibtex 
@article{limkonchotiwat-etal-2023-sct,
    title = "An Efficient Self-Supervised Cross-View Training For Sentence Embedding",
    author = "Limkonchotiwat, Peerat  and
      Ponwitayarat, Wuttikorn  and
      Lowphansirikul, Lalita and
      Udomcharoenchaikit, Can  and
      Chuangsuwanich, Ekapol  and
      Nutanong, Sarana",
    journal = "Transactions of the Association for Computational Linguistics",
    year = "2023",
    address = "Cambridge, MA",
    publisher = "MIT Press",
}
```