mrojas commited on
Commit
18c5e6c
·
1 Parent(s): 7a9863e

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +93 -0
README.md ADDED
@@ -0,0 +1,93 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ datasets:
6
+ - shared-task
7
+ metrics:
8
+ - precision
9
+ - recall
10
+ - f1
11
+ - accuracy
12
+ model-index:
13
+ - name: bsc-bio-ehr-es-finetuned-ner-1
14
+ results:
15
+ - task:
16
+ name: Token Classification
17
+ type: token-classification
18
+ dataset:
19
+ name: shared-task
20
+ type: shared-task
21
+ config: Shared
22
+ split: validation
23
+ args: Shared
24
+ metrics:
25
+ - name: Precision
26
+ type: precision
27
+ value: 0.28507462686567164
28
+ - name: Recall
29
+ type: recall
30
+ value: 0.3560111835973905
31
+ - name: F1
32
+ type: f1
33
+ value: 0.3166183174471612
34
+ - name: Accuracy
35
+ type: accuracy
36
+ value: 0.8444321635810997
37
+ ---
38
+
39
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
40
+ should probably proofread and complete it, then remove this comment. -->
41
+
42
+ # bsc-bio-ehr-es-finetuned-ner-1
43
+
44
+ This model is a fine-tuned version of [PlanTL-GOB-ES/bsc-bio-ehr-es](https://huggingface.co/PlanTL-GOB-ES/bsc-bio-ehr-es) on the shared-task dataset.
45
+ It achieves the following results on the evaluation set:
46
+ - Loss: 0.6021
47
+ - Precision: 0.2851
48
+ - Recall: 0.3560
49
+ - F1: 0.3166
50
+ - Accuracy: 0.8444
51
+
52
+ ## Model description
53
+
54
+ More information needed
55
+
56
+ ## Intended uses & limitations
57
+
58
+ More information needed
59
+
60
+ ## Training and evaluation data
61
+
62
+ More information needed
63
+
64
+ ## Training procedure
65
+
66
+ ### Training hyperparameters
67
+
68
+ The following hyperparameters were used during training:
69
+ - learning_rate: 5e-05
70
+ - train_batch_size: 8
71
+ - eval_batch_size: 8
72
+ - seed: 42
73
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
74
+ - lr_scheduler_type: linear
75
+ - num_epochs: 5
76
+
77
+ ### Training results
78
+
79
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
80
+ |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
81
+ | No log | 1.0 | 59 | 0.6644 | 0.2234 | 0.2600 | 0.2403 | 0.8198 |
82
+ | No log | 2.0 | 118 | 0.5786 | 0.1997 | 0.2507 | 0.2223 | 0.8331 |
83
+ | No log | 3.0 | 177 | 0.6083 | 0.2732 | 0.3187 | 0.2942 | 0.8379 |
84
+ | No log | 4.0 | 236 | 0.6032 | 0.2855 | 0.3486 | 0.3139 | 0.8366 |
85
+ | No log | 5.0 | 295 | 0.6021 | 0.2851 | 0.3560 | 0.3166 | 0.8444 |
86
+
87
+
88
+ ### Framework versions
89
+
90
+ - Transformers 4.28.1
91
+ - Pytorch 2.0.0+cu118
92
+ - Datasets 2.11.0
93
+ - Tokenizers 0.13.3