--- language: es thumbnail: https://i.imgur.com/uxAvBfh.png tags: - Spanish - Electra datasets: -large_spanish_corpus --- ## ELECTRICIDAD: The Spanish Electra [Imgur](https://imgur.com/uxAvBfh) **Electricidad-base-discriminator** (uncased) is a ```base``` Electra like model (discriminator in this case) trained on a [Large Spanish Corpus](https://github.com/josecannete/spanish-corpora) (aka BETO's corpus) As mentioned in the original [paper](https://openreview.net/pdf?id=r1xMH1BtvB): **ELECTRA** is a new method for self-supervised language representation learning. It can be used to pre-train transformer networks using relatively little compute. ELECTRA models are trained to distinguish "real" input tokens vs "fake" input tokens generated by another neural network, similar to the discriminator of a [GAN](https://arxiv.org/pdf/1406.2661.pdf). At small scale, ELECTRA achieves strong results even when trained on a single GPU. At large scale, ELECTRA achieves state-of-the-art results on the [SQuAD 2.0](https://rajpurkar.github.io/SQuAD-explorer/) dataset. For a detailed description and experimental results, please refer the paper [ELECTRA: Pre-training Text Encoders as Discriminators Rather Than Generators](https://openreview.net/pdf?id=r1xMH1BtvB). ## Model details ⚙ |Name| # Value| |-----|--------| |Layers| 12 | |Hidden | 768 | |Params| 110M | ## Evaluation metrics (for discriminator) 🧾 |Metric | # Score | |-------|---------| |Accuracy| 0.985| |Precision| 0.726| |AUC | 0.922| ## Fast example of usage 🚀 ```python from transformers import ElectraForPreTraining, ElectraTokenizerFast import torch discriminator = ElectraForPreTraining.from_pretrained("mrm8488/electricidad-base-discriminator") tokenizer = ElectraTokenizerFast.from_pretrained("mrm8488/electricidad-base-discriminator") sentence = "El rápido zorro marrón salta sobre el perro perezoso" fake_sentence = "El rápido zorro marrón amar sobre el perro perezoso" fake_tokens = tokenizer.tokenize(fake_sentence) fake_inputs = tokenizer.encode(fake_sentence, return_tensors="pt") discriminator_outputs = discriminator(fake_inputs) predictions = torch.round((torch.sign(discriminator_outputs[0]) + 1) / 2) [print("%7s" % token, end="") for token in fake_tokens] [print("%7s" % prediction, end="") for prediction in predictions.tolist()] # Output: ''' el rapido zorro marro ##n amar sobre el perro pere ##zoso 0.0 0.0 0.0 0.0 0.0 0.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0[None, None, None, None, None, None, None, None, None, None, None, None, None ''' ``` As you can see there are **1s** in the places where the model detected a fake token. So, it works! 🎉 ### Some models fine-tuned on a downstream task 🛠️ [Question Answering](https://huggingface.co/mrm8488/electricidad-base-finetuned-squadv1-es) [POS](https://huggingface.co/mrm8488/electricidad-base-finetuned-pos) [NER](https://huggingface.co/mrm8488/electricidad-base-finetuned-ner) ### Spanish LM model comparison 📊 | Dataset | Metric | RoBERTa-b | RoBERTa-l | BETO | mBERT | BERTIN | Electricidad-b | |-------------|----------|-----------|-----------|--------|--------|--------|---------| | UD-POS | F1 | 0.9907 | 0.9901 | 0.9900 | 0.9886 | 0.9904 | 0.9818 | | Conll-NER | F1 | 0.8851 | 0.8772 | 0.8759 | 0.8691 | 0.8627 | 0.7954 | | Capitel-POS | F1 | 0.9846 | 0.9851 | 0.9836 | 0.9839 | 0.9826 | 0.9816 | | Capitel-NER | F1 | 0.8959 | 0.8998 | 0.8771 | 0.8810 | 0.8741 | 0.8035 | | STS | Combined | 0.8423 | 0.8420 | 0.8216 | 0.8249 | 0.7822 | 0.8065 | | MLDoc | Accuracy | 0.9595 | 0.9600 | 0.9650 | 0.9560 | 0.9673 | 0.9490 | | PAWS-X | F1 | 0.9035 | 0.9000 | 0.8915 | 0.9020 | 0.8820 | **0.9045** | | XNLI | Accuracy | 0.8016 | 0.7958 | 0.8130 | 0.7876 | 0.7864 | 0.7878 | ## Acknowledgments I thank [🤗/transformers team](https://github.com/huggingface/transformers) for allowing me to train the model (specially to [Julien Chaumond](https://twitter.com/julien_c)). ## Citation If you want to cite this model you can use this: ```bibtex @misc{mromero2020electricidad-base-discriminator, title={Spanish Electra by Manuel Romero}, author={Romero, Manuel}, publisher={Hugging Face}, journal={Hugging Face Hub}, howpublished={\url{https://huggingface.co/mrm8488/electricidad-base-discriminator/}}, year={2020} } ``` > Created by [Manuel Romero/@mrm8488](https://twitter.com/mrm8488) > Made with in Spain