File size: 3,065 Bytes
154f8d6
 
 
 
 
 
 
92f00bd
 
154f8d6
 
 
 
 
441cf96
 
 
 
 
154f8d6
 
c33ed22
154f8d6
a1a7347
154f8d6
 
 
 
 
 
 
0213e6e
 
154f8d6
 
a7265f1
154f8d6
a7265f1
154f8d6
a7265f1
 
154f8d6
 
 
 
 
 
 
 
95b2fd5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0863236
 
 
 
 
95b2fd5
 
154f8d6
 
 
a1a7347
 
 
154f8d6
 
 
 
 
 
 
56c78ae
154f8d6
 
56c78ae
154f8d6
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
---
language: es
tags:
 - Spanish
 - BART
 - Legal

thumbnail: https://huggingface.co/mrm8488/bart-legal-base-es/resolve/main/bart_legal_logo-min.png

datasets:
 - Spanish-legal-corpora

---

<div style="text-align:center;width:250px;height:250px;">
    <img src="https://huggingface.co/mrm8488/bart-legal-base-es/resolve/main/bart_legal_logo-min.png" alt="Alpacoom logo"">
</div>


## BART Legal Spanish ⚖️

**BART Legal Spanish** (base) is a BART-like model trained on [A collection of corpora of Spanish legal domain](https://zenodo.org/record/5495529#.YZItp3vMLJw).

BART is a transformer *encoder-decoder* (seq2seq) model with a bidirectional (BERT-like) encoder and an autoregressive (GPT-like) decoder. BART is pre-trained by (1) corrupting text with an arbitrary noising function and (2) learning a model to reconstruct the original text.

This model is particularly effective when fine-tuned for text generation tasks (e.g., summarization, translation) but also works well for comprehension tasks (e.g., text classification, question answering).



## Training details

- Dataset: `Spanish-legal-corpora` - 90% for training / 10% for validation.
- Training script: see [here](https://github.com/huggingface/transformers/blob/main/examples/flax/language-modeling/run_bart_dlm_flax.py)


## [Evaluation metrics](https://huggingface.co/mrm8488/bart-legal-base-es/tensorboard?params=scalars#frame) 🧾

|Metric | # Value |
|-------|---------|
|Accuracy| 0.86|
|Loss| 0.68|


## Benchmarks 🔨

WIP 🚧

## How to use with `transformers`

```py
from transformers import BartForConditionalGeneration, BartTokenizer

model_id = "mrm8488/bart-legal-base-es"

model = BartForConditionalGeneration.from_pretrained(model_id, forced_bos_token_id=0)
tokenizer = BartTokenizer.from_pretrained(model_id)

def fill_mask_span(text):
  batch = tokenizer(text, return_tensors="pt")
  generated_ids = model.generate(batch["input_ids"])
  print(tokenizer.batch_decode(generated_ids, skip_special_tokens=True))

text = "Los españoles son <mask> ante la ley."
fill_mask_span(text)
# Output: ['Los españoles son iguales ante la ley.1.ª y 2.ª ante la']

text = "Los proyectos de reforma Constitucional deberán <mask> por una mayoría de tres quintos de cada una de las Cámaras."
fill_mask_span(text)
# Output: ['Los proyectos de reforma Constitucional deberán ser aprobados por una mayoría de tres quintos de cada']

```

## Acknowledgments

- [Narrativa](https://www.narrativa.com/)
- [QBlocks](https://www.qblocks.cloud/)
- [jarvislabs](https://jarvislabs.ai/)

## Citation
If you want to cite this model, you can use this:

```bibtex
@misc {manuel_romero_2023,
	author       = { {Manuel Romero} },
	title        = { bart-legal-base-es (Revision c33ed22) },
	year         = 2023,
	url          = { https://huggingface.co/mrm8488/bart-legal-base-es },
	doi          = { 10.57967/hf/0472 },
	publisher    = { Hugging Face }
}
```


> Created by [Manuel Romero/@mrm8488](https://twitter.com/mrm8488)

> Made with <span style="color: #e25555;">&hearts;</span> in Spain