--- library_name: transformers license: other base_model: mrcuddle/tiny-darkllama tags: - generated_from_trainer datasets: - Nitral-AI/Reddit-NSFW-Writing_Prompts_ShareGPT model-index: - name: model-out results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.6.0` ```yaml base_model: mrcuddle/tiny-darkllama bf16: auto datasets: - chat_template: tokenizer_default field_messages: conversations message_field_content: value message_field_role: from path: Nitral-AI/Reddit-NSFW-Writing_Prompts_ShareGPT split: train type: chat_template debug: null deepspeed: null early_stopping_patience: null eval_sample_packing: true eval_table_size: null evals_per_epoch: 1 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 2 gradient_checkpointing: true group_by_length: false learning_rate: 2e-5 load_in_4bit: false load_in_8bit: false logging_steps: 1 lr_scheduler: cosine max_steps: 25 micro_batch_size: 1 num_epochs: 1 optimizer: paged_adamw_8bit pad_to_sequence_len: true resume_from_checkpoint: null sample_packing: true saves_per_epoch: 1 sdp_attention: true sequence_len: 2048 special_tokens: pad_token: <|end_of_text|> strict: false tf32: false train_on_inputs: false warmup_steps: 1 weight_decay: 0.0 xformers_attention: null ```

# model-out This model is a fine-tuned version of [mrcuddle/tiny-darkllama](https://huggingface.co/mrcuddle/tiny-darkllama) on the Nitral-AI/Reddit-NSFW-Writing_Prompts_ShareGPT dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - distributed_type: multi-GPU - num_devices: 2 - gradient_accumulation_steps: 2 - total_train_batch_size: 4 - total_eval_batch_size: 2 - optimizer: Use OptimizerNames.PAGED_ADAMW_8BIT with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 2 - training_steps: 25 ### Training results ### Framework versions - Transformers 4.47.1 - Pytorch 2.5.1+cu124 - Datasets 3.1.0 - Tokenizers 0.21.0