File size: 6,377 Bytes
d713036 ecb487b d713036 e3a4eb4 d713036 03e0c5c d713036 8d91618 1bcb5d6 8d91618 1bcb5d6 8d91618 d713036 ecb487b d713036 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 |
---
base_model: fireworks-ai/mixtral-8x22b-instruct-oh
datasets:
- teknium/OpenHermes-2.5
language:
- en
library_name: transformers
license: apache-2.0
quantized_by: mradermacher
---
## About
<!-- ### quantize_version: 1 -->
<!-- ### output_tensor_quantised: 1 -->
<!-- ### convert_type: -->
<!-- ### vocab_type: -->
static quants of https://huggingface.co/fireworks-ai/mixtral-8x22b-instruct-oh
<!-- provided-files -->
weighted/imatrix quants are available at https://huggingface.co/mradermacher/mixtral-8x22b-instruct-oh-i1-GGUF
## Usage
If you are unsure how to use GGUF files, refer to one of [TheBloke's
READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
more details, including on how to concatenate multi-part files.
## Provided Quants
(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
| Link | Type | Size/GB | Notes |
|:-----|:-----|--------:|:------|
| [PART 1](https://huggingface.co/mradermacher/mixtral-8x22b-instruct-oh-GGUF/resolve/main/mixtral-8x22b-instruct-oh.Q2_K.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/mixtral-8x22b-instruct-oh-GGUF/resolve/main/mixtral-8x22b-instruct-oh.Q2_K.gguf.part2of2) | Q2_K | 52.2 | |
| [PART 1](https://huggingface.co/mradermacher/mixtral-8x22b-instruct-oh-GGUF/resolve/main/mixtral-8x22b-instruct-oh.IQ3_XS.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/mixtral-8x22b-instruct-oh-GGUF/resolve/main/mixtral-8x22b-instruct-oh.IQ3_XS.gguf.part2of2) | IQ3_XS | 58.3 | |
| [PART 1](https://huggingface.co/mradermacher/mixtral-8x22b-instruct-oh-GGUF/resolve/main/mixtral-8x22b-instruct-oh.IQ3_S.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/mixtral-8x22b-instruct-oh-GGUF/resolve/main/mixtral-8x22b-instruct-oh.IQ3_S.gguf.part2of2) | IQ3_S | 61.6 | beats Q3_K* |
| [PART 1](https://huggingface.co/mradermacher/mixtral-8x22b-instruct-oh-GGUF/resolve/main/mixtral-8x22b-instruct-oh.Q3_K_S.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/mixtral-8x22b-instruct-oh-GGUF/resolve/main/mixtral-8x22b-instruct-oh.Q3_K_S.gguf.part2of2) | Q3_K_S | 61.6 | |
| [PART 1](https://huggingface.co/mradermacher/mixtral-8x22b-instruct-oh-GGUF/resolve/main/mixtral-8x22b-instruct-oh.IQ3_M.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/mixtral-8x22b-instruct-oh-GGUF/resolve/main/mixtral-8x22b-instruct-oh.IQ3_M.gguf.part2of2) | IQ3_M | 64.6 | |
| [PART 1](https://huggingface.co/mradermacher/mixtral-8x22b-instruct-oh-GGUF/resolve/main/mixtral-8x22b-instruct-oh.Q3_K_M.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/mixtral-8x22b-instruct-oh-GGUF/resolve/main/mixtral-8x22b-instruct-oh.Q3_K_M.gguf.part2of2) | Q3_K_M | 67.9 | lower quality |
| [PART 1](https://huggingface.co/mradermacher/mixtral-8x22b-instruct-oh-GGUF/resolve/main/mixtral-8x22b-instruct-oh.Q3_K_L.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/mixtral-8x22b-instruct-oh-GGUF/resolve/main/mixtral-8x22b-instruct-oh.Q3_K_L.gguf.part2of2) | Q3_K_L | 72.7 | |
| [PART 1](https://huggingface.co/mradermacher/mixtral-8x22b-instruct-oh-GGUF/resolve/main/mixtral-8x22b-instruct-oh.IQ4_XS.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/mixtral-8x22b-instruct-oh-GGUF/resolve/main/mixtral-8x22b-instruct-oh.IQ4_XS.gguf.part2of2) | IQ4_XS | 76.5 | |
| [PART 1](https://huggingface.co/mradermacher/mixtral-8x22b-instruct-oh-GGUF/resolve/main/mixtral-8x22b-instruct-oh.Q4_K_S.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/mixtral-8x22b-instruct-oh-GGUF/resolve/main/mixtral-8x22b-instruct-oh.Q4_K_S.gguf.part2of2) | Q4_K_S | 80.6 | fast, recommended |
| [PART 1](https://huggingface.co/mradermacher/mixtral-8x22b-instruct-oh-GGUF/resolve/main/mixtral-8x22b-instruct-oh.Q4_K_M.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/mixtral-8x22b-instruct-oh-GGUF/resolve/main/mixtral-8x22b-instruct-oh.Q4_K_M.gguf.part2of2) | Q4_K_M | 85.7 | fast, recommended |
| [PART 1](https://huggingface.co/mradermacher/mixtral-8x22b-instruct-oh-GGUF/resolve/main/mixtral-8x22b-instruct-oh.Q5_K_S.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/mixtral-8x22b-instruct-oh-GGUF/resolve/main/mixtral-8x22b-instruct-oh.Q5_K_S.gguf.part2of2) | Q5_K_S | 97.1 | |
| [PART 1](https://huggingface.co/mradermacher/mixtral-8x22b-instruct-oh-GGUF/resolve/main/mixtral-8x22b-instruct-oh.Q5_K_M.gguf.part1of3) [PART 2](https://huggingface.co/mradermacher/mixtral-8x22b-instruct-oh-GGUF/resolve/main/mixtral-8x22b-instruct-oh.Q5_K_M.gguf.part2of3) [PART 3](https://huggingface.co/mradermacher/mixtral-8x22b-instruct-oh-GGUF/resolve/main/mixtral-8x22b-instruct-oh.Q5_K_M.gguf.part3of3) | Q5_K_M | 100.1 | |
| [PART 1](https://huggingface.co/mradermacher/mixtral-8x22b-instruct-oh-GGUF/resolve/main/mixtral-8x22b-instruct-oh.Q6_K.gguf.part1of3) [PART 2](https://huggingface.co/mradermacher/mixtral-8x22b-instruct-oh-GGUF/resolve/main/mixtral-8x22b-instruct-oh.Q6_K.gguf.part2of3) [PART 3](https://huggingface.co/mradermacher/mixtral-8x22b-instruct-oh-GGUF/resolve/main/mixtral-8x22b-instruct-oh.Q6_K.gguf.part3of3) | Q6_K | 115.6 | very good quality |
| [PART 1](https://huggingface.co/mradermacher/mixtral-8x22b-instruct-oh-GGUF/resolve/main/mixtral-8x22b-instruct-oh.Q8_0.gguf.part1of4) [PART 2](https://huggingface.co/mradermacher/mixtral-8x22b-instruct-oh-GGUF/resolve/main/mixtral-8x22b-instruct-oh.Q8_0.gguf.part2of4) [PART 3](https://huggingface.co/mradermacher/mixtral-8x22b-instruct-oh-GGUF/resolve/main/mixtral-8x22b-instruct-oh.Q8_0.gguf.part3of4) [PART 4](https://huggingface.co/mradermacher/mixtral-8x22b-instruct-oh-GGUF/resolve/main/mixtral-8x22b-instruct-oh.Q8_0.gguf.part4of4) | Q8_0 | 149.5 | fast, best quality |
Here is a handy graph by ikawrakow comparing some lower-quality quant
types (lower is better):
![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png)
And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
## FAQ / Model Request
See https://huggingface.co/mradermacher/model_requests for some answers to
questions you might have and/or if you want some other model quantized.
## Thanks
I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
me use its servers and providing upgrades to my workstation to enable
this work in my free time.
<!-- end -->
|