--- arxiv: 2412.17743 base_model: yulan-team/YuLan-Mini datasets: - yulan-team/YuLan-Mini-Datasets - HuggingFaceFW/fineweb-edu - bigcode/the-stack-v2 - mlfoundations/dclm-baseline-1.0 - math-ai/AutoMathText - gair-prox/open-web-math-pro - RUC-AIBOX/long_form_thought_data_5k - internlm/Lean-Workbook - internlm/Lean-Github - deepseek-ai/DeepSeek-Prover-V1 - ScalableMath/Lean-STaR-base - ScalableMath/Lean-STaR-plus - ScalableMath/Lean-CoT-base - ScalableMath/Lean-CoT-plus - opencsg/chinese-fineweb-edu - liwu/MNBVC - vikp/textbook_quality_programming - HuggingFaceTB/smollm-corpus - OpenCoder-LLM/opc-annealing-corpus - OpenCoder-LLM/opc-sft-stage1 - OpenCoder-LLM/opc-sft-stage2 - XinyaoHu/AMPS_mathematica - deepmind/math_dataset - mrfakename/basic-math-10m - microsoft/orca-math-word-problems-200k - AI-MO/NuminaMath-CoT - HuggingFaceTB/cosmopedia - MU-NLPC/Calc-ape210k - manu/project_gutenberg - storytracer/LoC-PD-Books - allenai/dolma language: - en - zh library_name: transformers license: mit quantized_by: mradermacher tags: - code - math --- ## About static quants of https://huggingface.co/yulan-team/YuLan-Mini weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/YuLan-Mini-GGUF/resolve/main/YuLan-Mini.Q3_K_S.gguf) | Q3_K_S | 1.6 | | | [GGUF](https://huggingface.co/mradermacher/YuLan-Mini-GGUF/resolve/main/YuLan-Mini.Q2_K.gguf) | Q2_K | 1.6 | | | [GGUF](https://huggingface.co/mradermacher/YuLan-Mini-GGUF/resolve/main/YuLan-Mini.IQ4_XS.gguf) | IQ4_XS | 1.6 | | | [GGUF](https://huggingface.co/mradermacher/YuLan-Mini-GGUF/resolve/main/YuLan-Mini.Q3_K_M.gguf) | Q3_K_M | 1.7 | lower quality | | [GGUF](https://huggingface.co/mradermacher/YuLan-Mini-GGUF/resolve/main/YuLan-Mini.Q3_K_L.gguf) | Q3_K_L | 1.7 | | | [GGUF](https://huggingface.co/mradermacher/YuLan-Mini-GGUF/resolve/main/YuLan-Mini.Q4_K_S.gguf) | Q4_K_S | 1.8 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/YuLan-Mini-GGUF/resolve/main/YuLan-Mini.Q4_K_M.gguf) | Q4_K_M | 1.9 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/YuLan-Mini-GGUF/resolve/main/YuLan-Mini.Q5_K_S.gguf) | Q5_K_S | 2.0 | | | [GGUF](https://huggingface.co/mradermacher/YuLan-Mini-GGUF/resolve/main/YuLan-Mini.Q5_K_M.gguf) | Q5_K_M | 2.1 | | | [GGUF](https://huggingface.co/mradermacher/YuLan-Mini-GGUF/resolve/main/YuLan-Mini.Q6_K.gguf) | Q6_K | 2.7 | very good quality | | [GGUF](https://huggingface.co/mradermacher/YuLan-Mini-GGUF/resolve/main/YuLan-Mini.Q8_0.gguf) | Q8_0 | 2.7 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/YuLan-Mini-GGUF/resolve/main/YuLan-Mini.f16.gguf) | f16 | 5.0 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time.