Transformers
GGUF
English
text-generation-inference
unsloth
mistral
trl
sft
theprint
Inference Endpoints
imatrix
conversational
mradermacher commited on
Commit
57ca91c
·
verified ·
1 Parent(s): 5734697

auto-patch README.md

Browse files
Files changed (1) hide show
  1. README.md +82 -0
README.md CHANGED
@@ -1,6 +1,88 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  <!-- ### quantize_version: 2 -->
2
  <!-- ### output_tensor_quantised: 1 -->
3
  <!-- ### convert_type: hf -->
4
  <!-- ### vocab_type: -->
5
  <!-- ### tags: nicoboss -->
6
  weighted/imatrix quants of https://huggingface.co/theprint/ReWiz-7B
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: theprint/ReWiz-7B
3
+ datasets:
4
+ - KingNish/reasoning-base-20k
5
+ - arcee-ai/EvolKit-20k
6
+ - cognitivecomputations/WizardLM_alpaca_evol_instruct_70k_unfiltered
7
+ language:
8
+ - en
9
+ library_name: transformers
10
+ license: apache-2.0
11
+ quantized_by: mradermacher
12
+ tags:
13
+ - text-generation-inference
14
+ - transformers
15
+ - unsloth
16
+ - mistral
17
+ - trl
18
+ - sft
19
+ - theprint
20
+ ---
21
+ ## About
22
+
23
  <!-- ### quantize_version: 2 -->
24
  <!-- ### output_tensor_quantised: 1 -->
25
  <!-- ### convert_type: hf -->
26
  <!-- ### vocab_type: -->
27
  <!-- ### tags: nicoboss -->
28
  weighted/imatrix quants of https://huggingface.co/theprint/ReWiz-7B
29
+
30
+ <!-- provided-files -->
31
+ static quants are available at https://huggingface.co/mradermacher/ReWiz-7B-GGUF
32
+ ## Usage
33
+
34
+ If you are unsure how to use GGUF files, refer to one of [TheBloke's
35
+ READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
36
+ more details, including on how to concatenate multi-part files.
37
+
38
+ ## Provided Quants
39
+
40
+ (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
41
+
42
+ | Link | Type | Size/GB | Notes |
43
+ |:-----|:-----|--------:|:------|
44
+ | [GGUF](https://huggingface.co/mradermacher/ReWiz-7B-i1-GGUF/resolve/main/ReWiz-7B.i1-IQ1_S.gguf) | i1-IQ1_S | 1.7 | for the desperate |
45
+ | [GGUF](https://huggingface.co/mradermacher/ReWiz-7B-i1-GGUF/resolve/main/ReWiz-7B.i1-IQ1_M.gguf) | i1-IQ1_M | 1.9 | mostly desperate |
46
+ | [GGUF](https://huggingface.co/mradermacher/ReWiz-7B-i1-GGUF/resolve/main/ReWiz-7B.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 2.1 | |
47
+ | [GGUF](https://huggingface.co/mradermacher/ReWiz-7B-i1-GGUF/resolve/main/ReWiz-7B.i1-IQ2_XS.gguf) | i1-IQ2_XS | 2.3 | |
48
+ | [GGUF](https://huggingface.co/mradermacher/ReWiz-7B-i1-GGUF/resolve/main/ReWiz-7B.i1-IQ2_S.gguf) | i1-IQ2_S | 2.4 | |
49
+ | [GGUF](https://huggingface.co/mradermacher/ReWiz-7B-i1-GGUF/resolve/main/ReWiz-7B.i1-IQ2_M.gguf) | i1-IQ2_M | 2.6 | |
50
+ | [GGUF](https://huggingface.co/mradermacher/ReWiz-7B-i1-GGUF/resolve/main/ReWiz-7B.i1-Q2_K.gguf) | i1-Q2_K | 2.8 | IQ3_XXS probably better |
51
+ | [GGUF](https://huggingface.co/mradermacher/ReWiz-7B-i1-GGUF/resolve/main/ReWiz-7B.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 2.9 | lower quality |
52
+ | [GGUF](https://huggingface.co/mradermacher/ReWiz-7B-i1-GGUF/resolve/main/ReWiz-7B.i1-IQ3_XS.gguf) | i1-IQ3_XS | 3.1 | |
53
+ | [GGUF](https://huggingface.co/mradermacher/ReWiz-7B-i1-GGUF/resolve/main/ReWiz-7B.i1-Q3_K_S.gguf) | i1-Q3_K_S | 3.3 | IQ3_XS probably better |
54
+ | [GGUF](https://huggingface.co/mradermacher/ReWiz-7B-i1-GGUF/resolve/main/ReWiz-7B.i1-IQ3_S.gguf) | i1-IQ3_S | 3.3 | beats Q3_K* |
55
+ | [GGUF](https://huggingface.co/mradermacher/ReWiz-7B-i1-GGUF/resolve/main/ReWiz-7B.i1-IQ3_M.gguf) | i1-IQ3_M | 3.4 | |
56
+ | [GGUF](https://huggingface.co/mradermacher/ReWiz-7B-i1-GGUF/resolve/main/ReWiz-7B.i1-Q3_K_M.gguf) | i1-Q3_K_M | 3.6 | IQ3_S probably better |
57
+ | [GGUF](https://huggingface.co/mradermacher/ReWiz-7B-i1-GGUF/resolve/main/ReWiz-7B.i1-Q3_K_L.gguf) | i1-Q3_K_L | 3.9 | IQ3_M probably better |
58
+ | [GGUF](https://huggingface.co/mradermacher/ReWiz-7B-i1-GGUF/resolve/main/ReWiz-7B.i1-IQ4_XS.gguf) | i1-IQ4_XS | 4.0 | |
59
+ | [GGUF](https://huggingface.co/mradermacher/ReWiz-7B-i1-GGUF/resolve/main/ReWiz-7B.i1-Q4_0_4_4.gguf) | i1-Q4_0_4_4 | 4.2 | fast on arm, low quality |
60
+ | [GGUF](https://huggingface.co/mradermacher/ReWiz-7B-i1-GGUF/resolve/main/ReWiz-7B.i1-Q4_0_4_8.gguf) | i1-Q4_0_4_8 | 4.2 | fast on arm+i8mm, low quality |
61
+ | [GGUF](https://huggingface.co/mradermacher/ReWiz-7B-i1-GGUF/resolve/main/ReWiz-7B.i1-Q4_0_8_8.gguf) | i1-Q4_0_8_8 | 4.2 | fast on arm+sve, low quality |
62
+ | [GGUF](https://huggingface.co/mradermacher/ReWiz-7B-i1-GGUF/resolve/main/ReWiz-7B.i1-Q4_0.gguf) | i1-Q4_0 | 4.2 | fast, low quality |
63
+ | [GGUF](https://huggingface.co/mradermacher/ReWiz-7B-i1-GGUF/resolve/main/ReWiz-7B.i1-Q4_K_S.gguf) | i1-Q4_K_S | 4.2 | optimal size/speed/quality |
64
+ | [GGUF](https://huggingface.co/mradermacher/ReWiz-7B-i1-GGUF/resolve/main/ReWiz-7B.i1-Q4_K_M.gguf) | i1-Q4_K_M | 4.5 | fast, recommended |
65
+ | [GGUF](https://huggingface.co/mradermacher/ReWiz-7B-i1-GGUF/resolve/main/ReWiz-7B.i1-Q5_K_S.gguf) | i1-Q5_K_S | 5.1 | |
66
+ | [GGUF](https://huggingface.co/mradermacher/ReWiz-7B-i1-GGUF/resolve/main/ReWiz-7B.i1-Q5_K_M.gguf) | i1-Q5_K_M | 5.2 | |
67
+ | [GGUF](https://huggingface.co/mradermacher/ReWiz-7B-i1-GGUF/resolve/main/ReWiz-7B.i1-Q6_K.gguf) | i1-Q6_K | 6.0 | practically like static Q6_K |
68
+
69
+ Here is a handy graph by ikawrakow comparing some lower-quality quant
70
+ types (lower is better):
71
+
72
+ ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png)
73
+
74
+ And here are Artefact2's thoughts on the matter:
75
+ https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
76
+
77
+ ## FAQ / Model Request
78
+
79
+ See https://huggingface.co/mradermacher/model_requests for some answers to
80
+ questions you might have and/or if you want some other model quantized.
81
+
82
+ ## Thanks
83
+
84
+ I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
85
+ me use its servers and providing upgrades to my workstation to enable
86
+ this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to.
87
+
88
+ <!-- end -->