--- base_model: trollek/NinjaMouse-2.4B-32L-danube datasets: - m-a-p/Code-Feedback - HuggingFaceTB/cosmopedia-100k - LDJnr/Capybara - vicgalle/alpaca-gpt4 - glaiveai/glaive-code-assistant-v2 - WhiteRabbitNeo/WRN-Chapter-1 - WhiteRabbitNeo/WRN-Chapter-2 - m-a-p/CodeFeedback-Filtered-Instruction - jondurbin/airoboros-3.2 - euclaise/WritingPrompts_curated - derek-thomas/squad-v1.1-t5-question-generation - reinforz/question_generation_data - teknium/GPTeacher-General-Instruct - dim/roleplay_instruct_v2_final - TIGER-Lab/MathInstruct - abacusai/SystemChat - Mihaiii/OpenHermes-2.5-1k-longest-curated language: - en library_name: transformers license: apache-2.0 license_link: LICENSE license_name: a quantized_by: mradermacher tags: - code --- ## About static quants of https://huggingface.co/trollek/NinjaMouse-2.4B-32L-danube weighted/imatrix quants are available at https://huggingface.co/mradermacher/NinjaMouse-2.4B-32L-danube-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/NinjaMouse-2.4B-32L-danube-GGUF/resolve/main/NinjaMouse-2.4B-32L-danube.Q2_K.gguf) | Q2_K | 1.0 | | | [GGUF](https://huggingface.co/mradermacher/NinjaMouse-2.4B-32L-danube-GGUF/resolve/main/NinjaMouse-2.4B-32L-danube.Q3_K_S.gguf) | Q3_K_S | 1.2 | | | [GGUF](https://huggingface.co/mradermacher/NinjaMouse-2.4B-32L-danube-GGUF/resolve/main/NinjaMouse-2.4B-32L-danube.Q3_K_M.gguf) | Q3_K_M | 1.3 | lower quality | | [GGUF](https://huggingface.co/mradermacher/NinjaMouse-2.4B-32L-danube-GGUF/resolve/main/NinjaMouse-2.4B-32L-danube.Q3_K_L.gguf) | Q3_K_L | 1.4 | | | [GGUF](https://huggingface.co/mradermacher/NinjaMouse-2.4B-32L-danube-GGUF/resolve/main/NinjaMouse-2.4B-32L-danube.IQ4_XS.gguf) | IQ4_XS | 1.4 | | | [GGUF](https://huggingface.co/mradermacher/NinjaMouse-2.4B-32L-danube-GGUF/resolve/main/NinjaMouse-2.4B-32L-danube.Q4_K_S.gguf) | Q4_K_S | 1.5 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/NinjaMouse-2.4B-32L-danube-GGUF/resolve/main/NinjaMouse-2.4B-32L-danube.Q4_K_M.gguf) | Q4_K_M | 1.5 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/NinjaMouse-2.4B-32L-danube-GGUF/resolve/main/NinjaMouse-2.4B-32L-danube.Q5_K_S.gguf) | Q5_K_S | 1.8 | | | [GGUF](https://huggingface.co/mradermacher/NinjaMouse-2.4B-32L-danube-GGUF/resolve/main/NinjaMouse-2.4B-32L-danube.Q5_K_M.gguf) | Q5_K_M | 1.8 | | | [GGUF](https://huggingface.co/mradermacher/NinjaMouse-2.4B-32L-danube-GGUF/resolve/main/NinjaMouse-2.4B-32L-danube.Q6_K.gguf) | Q6_K | 2.1 | very good quality | | [GGUF](https://huggingface.co/mradermacher/NinjaMouse-2.4B-32L-danube-GGUF/resolve/main/NinjaMouse-2.4B-32L-danube.Q8_0.gguf) | Q8_0 | 2.6 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/NinjaMouse-2.4B-32L-danube-GGUF/resolve/main/NinjaMouse-2.4B-32L-danube.f16.gguf) | f16 | 4.9 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to.