--- base_model: CultriX/NeuralMona_MoE-4x7B language: - en library_name: transformers license: apache-2.0 quantized_by: mradermacher tags: - moe - frankenmoe - merge - mergekit - lazymergekit - CultriX/MonaTrix-v4 - mlabonne/OmniTruthyBeagle-7B-v0 - CultriX/MoNeuTrix-7B-v1 - paulml/OmniBeagleSquaredMBX-v3-7B --- ## About static quants of https://huggingface.co/CultriX/NeuralMona_MoE-4x7B weighted/imatrix quants are available at https://huggingface.co/mradermacher/NeuralMona_MoE-4x7B-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/NeuralMona_MoE-4x7B-GGUF/resolve/main/NeuralMona_MoE-4x7B.Q2_K.gguf) | Q2_K | 9.1 | | | [GGUF](https://huggingface.co/mradermacher/NeuralMona_MoE-4x7B-GGUF/resolve/main/NeuralMona_MoE-4x7B.IQ3_XS.gguf) | IQ3_XS | 10.1 | | | [GGUF](https://huggingface.co/mradermacher/NeuralMona_MoE-4x7B-GGUF/resolve/main/NeuralMona_MoE-4x7B.Q3_K_S.gguf) | Q3_K_S | 10.7 | | | [GGUF](https://huggingface.co/mradermacher/NeuralMona_MoE-4x7B-GGUF/resolve/main/NeuralMona_MoE-4x7B.IQ3_S.gguf) | IQ3_S | 10.7 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/NeuralMona_MoE-4x7B-GGUF/resolve/main/NeuralMona_MoE-4x7B.IQ3_M.gguf) | IQ3_M | 10.9 | | | [GGUF](https://huggingface.co/mradermacher/NeuralMona_MoE-4x7B-GGUF/resolve/main/NeuralMona_MoE-4x7B.Q3_K_M.gguf) | Q3_K_M | 11.8 | lower quality | | [GGUF](https://huggingface.co/mradermacher/NeuralMona_MoE-4x7B-GGUF/resolve/main/NeuralMona_MoE-4x7B.Q3_K_L.gguf) | Q3_K_L | 12.8 | | | [GGUF](https://huggingface.co/mradermacher/NeuralMona_MoE-4x7B-GGUF/resolve/main/NeuralMona_MoE-4x7B.IQ4_XS.gguf) | IQ4_XS | 13.3 | | | [GGUF](https://huggingface.co/mradermacher/NeuralMona_MoE-4x7B-GGUF/resolve/main/NeuralMona_MoE-4x7B.Q4_0.gguf) | Q4_0 | 13.9 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/NeuralMona_MoE-4x7B-GGUF/resolve/main/NeuralMona_MoE-4x7B.Q4_K_S.gguf) | Q4_K_S | 14.0 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/NeuralMona_MoE-4x7B-GGUF/resolve/main/NeuralMona_MoE-4x7B.IQ4_NL.gguf) | IQ4_NL | 14.0 | prefer IQ4_XS | | [GGUF](https://huggingface.co/mradermacher/NeuralMona_MoE-4x7B-GGUF/resolve/main/NeuralMona_MoE-4x7B.Q4_K_M.gguf) | Q4_K_M | 14.9 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/NeuralMona_MoE-4x7B-GGUF/resolve/main/NeuralMona_MoE-4x7B.Q5_K_S.gguf) | Q5_K_S | 16.9 | | | [GGUF](https://huggingface.co/mradermacher/NeuralMona_MoE-4x7B-GGUF/resolve/main/NeuralMona_MoE-4x7B.Q5_K_M.gguf) | Q5_K_M | 17.4 | | | [GGUF](https://huggingface.co/mradermacher/NeuralMona_MoE-4x7B-GGUF/resolve/main/NeuralMona_MoE-4x7B.Q6_K.gguf) | Q6_K | 20.1 | very good quality | | [GGUF](https://huggingface.co/mradermacher/NeuralMona_MoE-4x7B-GGUF/resolve/main/NeuralMona_MoE-4x7B.Q8_0.gguf) | Q8_0 | 25.9 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time.