mradermacher commited on
Commit
23f9729
·
verified ·
1 Parent(s): b28dca8

auto-patch README.md

Browse files
Files changed (1) hide show
  1. README.md +68 -0
README.md CHANGED
@@ -1,6 +1,74 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  <!-- ### quantize_version: 2 -->
2
  <!-- ### output_tensor_quantised: 1 -->
3
  <!-- ### convert_type: hf -->
4
  <!-- ### vocab_type: -->
5
  <!-- ### tags: nicoboss -->
6
  static quants of https://huggingface.co/prithivMLmods/Neumind-Math-7B-Instruct
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: prithivMLmods/Neumind-Math-7B-Instruct
3
+ datasets:
4
+ - AI-MO/NuminaMath-CoT
5
+ language:
6
+ - en
7
+ library_name: transformers
8
+ license: creativeml-openrail-m
9
+ quantized_by: mradermacher
10
+ tags:
11
+ - Qwen2.5
12
+ - Ollama
13
+ - Neumind
14
+ - Math
15
+ - Instruct
16
+ - safetensors
17
+ - pytorch
18
+ - trl
19
+ ---
20
+ ## About
21
+
22
  <!-- ### quantize_version: 2 -->
23
  <!-- ### output_tensor_quantised: 1 -->
24
  <!-- ### convert_type: hf -->
25
  <!-- ### vocab_type: -->
26
  <!-- ### tags: nicoboss -->
27
  static quants of https://huggingface.co/prithivMLmods/Neumind-Math-7B-Instruct
28
+
29
+ <!-- provided-files -->
30
+ weighted/imatrix quants are available at https://huggingface.co/mradermacher/Neumind-Math-7B-Instruct-i1-GGUF
31
+ ## Usage
32
+
33
+ If you are unsure how to use GGUF files, refer to one of [TheBloke's
34
+ READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
35
+ more details, including on how to concatenate multi-part files.
36
+
37
+ ## Provided Quants
38
+
39
+ (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
40
+
41
+ | Link | Type | Size/GB | Notes |
42
+ |:-----|:-----|--------:|:------|
43
+ | [GGUF](https://huggingface.co/mradermacher/Neumind-Math-7B-Instruct-GGUF/resolve/main/Neumind-Math-7B-Instruct.Q2_K.gguf) | Q2_K | 3.1 | |
44
+ | [GGUF](https://huggingface.co/mradermacher/Neumind-Math-7B-Instruct-GGUF/resolve/main/Neumind-Math-7B-Instruct.Q3_K_S.gguf) | Q3_K_S | 3.6 | |
45
+ | [GGUF](https://huggingface.co/mradermacher/Neumind-Math-7B-Instruct-GGUF/resolve/main/Neumind-Math-7B-Instruct.Q3_K_M.gguf) | Q3_K_M | 3.9 | lower quality |
46
+ | [GGUF](https://huggingface.co/mradermacher/Neumind-Math-7B-Instruct-GGUF/resolve/main/Neumind-Math-7B-Instruct.Q3_K_L.gguf) | Q3_K_L | 4.2 | |
47
+ | [GGUF](https://huggingface.co/mradermacher/Neumind-Math-7B-Instruct-GGUF/resolve/main/Neumind-Math-7B-Instruct.Q4_K_S.gguf) | Q4_K_S | 4.6 | fast, recommended |
48
+ | [GGUF](https://huggingface.co/mradermacher/Neumind-Math-7B-Instruct-GGUF/resolve/main/Neumind-Math-7B-Instruct.Q4_K_M.gguf) | Q4_K_M | 4.8 | fast, recommended |
49
+ | [GGUF](https://huggingface.co/mradermacher/Neumind-Math-7B-Instruct-GGUF/resolve/main/Neumind-Math-7B-Instruct.Q5_K_S.gguf) | Q5_K_S | 5.4 | |
50
+ | [GGUF](https://huggingface.co/mradermacher/Neumind-Math-7B-Instruct-GGUF/resolve/main/Neumind-Math-7B-Instruct.Q5_K_M.gguf) | Q5_K_M | 5.5 | |
51
+ | [GGUF](https://huggingface.co/mradermacher/Neumind-Math-7B-Instruct-GGUF/resolve/main/Neumind-Math-7B-Instruct.Q6_K.gguf) | Q6_K | 6.4 | very good quality |
52
+ | [GGUF](https://huggingface.co/mradermacher/Neumind-Math-7B-Instruct-GGUF/resolve/main/Neumind-Math-7B-Instruct.Q8_0.gguf) | Q8_0 | 8.2 | fast, best quality |
53
+ | [GGUF](https://huggingface.co/mradermacher/Neumind-Math-7B-Instruct-GGUF/resolve/main/Neumind-Math-7B-Instruct.f16.gguf) | f16 | 15.3 | 16 bpw, overkill |
54
+
55
+ Here is a handy graph by ikawrakow comparing some lower-quality quant
56
+ types (lower is better):
57
+
58
+ ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png)
59
+
60
+ And here are Artefact2's thoughts on the matter:
61
+ https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
62
+
63
+ ## FAQ / Model Request
64
+
65
+ See https://huggingface.co/mradermacher/model_requests for some answers to
66
+ questions you might have and/or if you want some other model quantized.
67
+
68
+ ## Thanks
69
+
70
+ I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
71
+ me use its servers and providing upgrades to my workstation to enable
72
+ this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to.
73
+
74
+ <!-- end -->