File size: 4,065 Bytes
cf060d8 5004eb5 cf060d8 235ba31 cf060d8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 |
---
base_model: jpacifico/Chocolatine-14B-Instruct-DPO-v1.2
datasets:
- jpacifico/french-orca-dpo-pairs-revised
language:
- fr
- en
library_name: transformers
license: mit
quantized_by: mradermacher
tags:
- french
- chocolatine
---
## About
<!-- ### quantize_version: 2 -->
<!-- ### output_tensor_quantised: 1 -->
<!-- ### convert_type: hf -->
<!-- ### vocab_type: -->
<!-- ### tags: -->
static quants of https://huggingface.co/jpacifico/Chocolatine-14B-Instruct-DPO-v1.2
<!-- provided-files -->
weighted/imatrix quants are available at https://huggingface.co/mradermacher/Chocolatine-14B-Instruct-DPO-v1.2-i1-GGUF
## Usage
If you are unsure how to use GGUF files, refer to one of [TheBloke's
READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
more details, including on how to concatenate multi-part files.
## Provided Quants
(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
| Link | Type | Size/GB | Notes |
|:-----|:-----|--------:|:------|
| [GGUF](https://huggingface.co/mradermacher/Chocolatine-14B-Instruct-DPO-v1.2-GGUF/resolve/main/Chocolatine-14B-Instruct-DPO-v1.2.Q2_K.gguf) | Q2_K | 5.2 | |
| [GGUF](https://huggingface.co/mradermacher/Chocolatine-14B-Instruct-DPO-v1.2-GGUF/resolve/main/Chocolatine-14B-Instruct-DPO-v1.2.IQ3_XS.gguf) | IQ3_XS | 5.9 | |
| [GGUF](https://huggingface.co/mradermacher/Chocolatine-14B-Instruct-DPO-v1.2-GGUF/resolve/main/Chocolatine-14B-Instruct-DPO-v1.2.IQ3_S.gguf) | IQ3_S | 6.2 | beats Q3_K* |
| [GGUF](https://huggingface.co/mradermacher/Chocolatine-14B-Instruct-DPO-v1.2-GGUF/resolve/main/Chocolatine-14B-Instruct-DPO-v1.2.Q3_K_S.gguf) | Q3_K_S | 6.2 | |
| [GGUF](https://huggingface.co/mradermacher/Chocolatine-14B-Instruct-DPO-v1.2-GGUF/resolve/main/Chocolatine-14B-Instruct-DPO-v1.2.IQ3_M.gguf) | IQ3_M | 6.6 | |
| [GGUF](https://huggingface.co/mradermacher/Chocolatine-14B-Instruct-DPO-v1.2-GGUF/resolve/main/Chocolatine-14B-Instruct-DPO-v1.2.Q3_K_M.gguf) | Q3_K_M | 7.0 | lower quality |
| [GGUF](https://huggingface.co/mradermacher/Chocolatine-14B-Instruct-DPO-v1.2-GGUF/resolve/main/Chocolatine-14B-Instruct-DPO-v1.2.Q3_K_L.gguf) | Q3_K_L | 7.6 | |
| [GGUF](https://huggingface.co/mradermacher/Chocolatine-14B-Instruct-DPO-v1.2-GGUF/resolve/main/Chocolatine-14B-Instruct-DPO-v1.2.IQ4_XS.gguf) | IQ4_XS | 7.6 | |
| [GGUF](https://huggingface.co/mradermacher/Chocolatine-14B-Instruct-DPO-v1.2-GGUF/resolve/main/Chocolatine-14B-Instruct-DPO-v1.2.Q4_K_S.gguf) | Q4_K_S | 8.1 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/Chocolatine-14B-Instruct-DPO-v1.2-GGUF/resolve/main/Chocolatine-14B-Instruct-DPO-v1.2.Q4_K_M.gguf) | Q4_K_M | 8.7 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/Chocolatine-14B-Instruct-DPO-v1.2-GGUF/resolve/main/Chocolatine-14B-Instruct-DPO-v1.2.Q5_K_S.gguf) | Q5_K_S | 9.7 | |
| [GGUF](https://huggingface.co/mradermacher/Chocolatine-14B-Instruct-DPO-v1.2-GGUF/resolve/main/Chocolatine-14B-Instruct-DPO-v1.2.Q5_K_M.gguf) | Q5_K_M | 10.2 | |
| [GGUF](https://huggingface.co/mradermacher/Chocolatine-14B-Instruct-DPO-v1.2-GGUF/resolve/main/Chocolatine-14B-Instruct-DPO-v1.2.Q6_K.gguf) | Q6_K | 11.6 | very good quality |
| [GGUF](https://huggingface.co/mradermacher/Chocolatine-14B-Instruct-DPO-v1.2-GGUF/resolve/main/Chocolatine-14B-Instruct-DPO-v1.2.Q8_0.gguf) | Q8_0 | 14.9 | fast, best quality |
Here is a handy graph by ikawrakow comparing some lower-quality quant
types (lower is better):
![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png)
And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
## FAQ / Model Request
See https://huggingface.co/mradermacher/model_requests for some answers to
questions you might have and/or if you want some other model quantized.
## Thanks
I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
me use its servers and providing upgrades to my workstation to enable
this work in my free time.
<!-- end -->
|