--- library_name: setfit tags: - setfit - sentence-transformers - text-classification - generated_from_setfit_trainer metrics: - accuracy widget: - text: Ruukki Group calculates that it has lost EUR 4mn in the failed project . - text: The Tecnomen Convergent Charging solution includes functionality for prepaid and post-paid billing , charging and rating of voice calls , video calls , raw data traffic and any type of content services in both mobile and fixed networks . - text: The combined value of the planned investments is about EUR 30mn . - text: The Diameter Protocol is developed according to the standards IETF RFC 3588 and IETF RFC 3539 . - text: Below are unaudited consolidated results for Aspocomp Group under IFRS reporting standards . pipeline_tag: text-classification inference: true base_model: BAAI/bge-small-en-v1.5 model-index: - name: SetFit with BAAI/bge-small-en-v1.5 results: - task: type: text-classification name: Text Classification dataset: name: Unknown type: unknown split: test metrics: - type: accuracy value: 0.9426048565121413 name: Accuracy --- # SetFit with BAAI/bge-small-en-v1.5 This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Model Details ### Model Description - **Model Type:** SetFit - **Sentence Transformer body:** [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance - **Maximum Sequence Length:** 512 tokens - **Number of Classes:** 3 classes ### Model Sources - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) ### Model Labels | Label | Examples | |:---------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | positive | | | neutral | | | negative | | ## Evaluation ### Metrics | Label | Accuracy | |:--------|:---------| | **all** | 0.9426 | ## Uses ### Direct Use for Inference First install the SetFit library: ```bash pip install setfit ``` Then you can load this model and run inference. ```python from setfit import SetFitModel # Download from the 🤗 Hub model = SetFitModel.from_pretrained("moshew/bge-small-en-v1.5-SetFit-FSA") # Run inference preds = model("The combined value of the planned investments is about EUR 30mn .") ``` ## Training Details ### Training Set Metrics | Training set | Min | Median | Max | |:-------------|:----|:--------|:----| | Word count | 2 | 22.4020 | 60 | | Label | Training Sample Count | |:---------|:----------------------| | negative | 266 | | neutral | 1142 | | positive | 403 | ### Training Hyperparameters - batch_size: (16, 16) - num_epochs: (1, 1) - max_steps: -1 - sampling_strategy: oversampling - num_iterations: 10 - body_learning_rate: (2e-05, 1e-05) - head_learning_rate: 0.01 - loss: CosineSimilarityLoss - distance_metric: cosine_distance - margin: 0.25 - end_to_end: False - use_amp: False - warmup_proportion: 0.1 - seed: 42 - eval_max_steps: -1 - load_best_model_at_end: False ### Training Results | Epoch | Step | Training Loss | Validation Loss | |:------:|:----:|:-------------:|:---------------:| | 0.0004 | 1 | 0.2832 | - | | 0.0221 | 50 | 0.209 | - | | 0.0442 | 100 | 0.1899 | - | | 0.0663 | 150 | 0.1399 | - | | 0.0883 | 200 | 0.1274 | - | | 0.1104 | 250 | 0.0586 | - | | 0.1325 | 300 | 0.0756 | - | | 0.1546 | 350 | 0.0777 | - | | 0.1767 | 400 | 0.0684 | - | | 0.1988 | 450 | 0.0311 | - | | 0.2208 | 500 | 0.0102 | - | | 0.2429 | 550 | 0.052 | - | | 0.2650 | 600 | 0.0149 | - | | 0.2871 | 650 | 0.1042 | - | | 0.3092 | 700 | 0.061 | - | | 0.3313 | 750 | 0.0083 | - | | 0.3534 | 800 | 0.0036 | - | | 0.3754 | 850 | 0.002 | - | | 0.3975 | 900 | 0.0598 | - | | 0.4196 | 950 | 0.0036 | - | | 0.4417 | 1000 | 0.0027 | - | | 0.4638 | 1050 | 0.0617 | - | | 0.4859 | 1100 | 0.0015 | - | | 0.5080 | 1150 | 0.0022 | - | | 0.5300 | 1200 | 0.0016 | - | | 0.5521 | 1250 | 0.0009 | - | | 0.5742 | 1300 | 0.0013 | - | | 0.5963 | 1350 | 0.0009 | - | | 0.6184 | 1400 | 0.0015 | - | | 0.6405 | 1450 | 0.0018 | - | | 0.6625 | 1500 | 0.0015 | - | | 0.6846 | 1550 | 0.0018 | - | | 0.7067 | 1600 | 0.0016 | - | | 0.7288 | 1650 | 0.0022 | - | | 0.7509 | 1700 | 0.0013 | - | | 0.7730 | 1750 | 0.0108 | - | | 0.7951 | 1800 | 0.0016 | - | | 0.8171 | 1850 | 0.0021 | - | | 0.8392 | 1900 | 0.002 | - | | 0.8613 | 1950 | 0.0015 | - | | 0.8834 | 2000 | 0.0016 | - | | 0.9055 | 2050 | 0.0028 | - | | 0.9276 | 2100 | 0.0013 | - | | 0.9496 | 2150 | 0.0019 | - | | 0.9717 | 2200 | 0.0075 | - | | 0.9938 | 2250 | 0.0015 | - | ### Framework Versions - Python: 3.10.12 - SetFit: 1.0.3 - Sentence Transformers: 2.5.1 - Transformers: 4.38.1 - PyTorch: 2.1.0+cu121 - Datasets: 2.18.0 - Tokenizers: 0.15.2 ## Citation ### BibTeX ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```