abhi-mosaic
commited on
Commit
·
3a2139e
1
Parent(s):
48823a4
Update README.md
Browse files
README.md
CHANGED
@@ -80,7 +80,10 @@ This model is best used with the MosaicML [llm-foundry repository](https://githu
|
|
80 |
|
81 |
```python
|
82 |
import transformers
|
83 |
-
model = transformers.AutoModelForCausalLM.from_pretrained(
|
|
|
|
|
|
|
84 |
```
|
85 |
Note: This model requires that `trust_remote_code=True` be passed to the `from_pretrained` method.
|
86 |
This is because we use a custom `MPT` model architecture that is not yet part of the Hugging Face `transformers` package.
|
@@ -88,19 +91,34 @@ This is because we use a custom `MPT` model architecture that is not yet part of
|
|
88 |
|
89 |
To use the optimized [triton implementation](https://github.com/openai/triton) of FlashAttention, you can load the model with `attn_impl='triton'` and move the model to `bfloat16`:
|
90 |
```python
|
91 |
-
config = transformers.AutoConfig.from_pretrained(
|
|
|
|
|
|
|
92 |
config.attn_config['attn_impl'] = 'triton'
|
93 |
|
94 |
-
model = transformers.AutoModelForCausalLM.from_pretrained(
|
|
|
|
|
|
|
|
|
|
|
95 |
model.to(device='cuda:0')
|
96 |
```
|
97 |
|
98 |
Although the model was trained with a sequence length of 2048, ALiBi enables users to increase the maximum sequence length during finetuning and/or inference. For example:
|
99 |
|
100 |
```python
|
101 |
-
config = transformers.AutoConfig.from_pretrained(
|
|
|
|
|
|
|
102 |
config.update({"max_seq_len": 4096})
|
103 |
-
model = transformers.AutoModelForCausalLM.from_pretrained(
|
|
|
|
|
|
|
|
|
104 |
```
|
105 |
|
106 |
This model was trained with the [EleutherAI/gpt-neox-20b](https://huggingface.co/EleutherAI/gpt-neox-20b) tokenizer.
|
|
|
80 |
|
81 |
```python
|
82 |
import transformers
|
83 |
+
model = transformers.AutoModelForCausalLM.from_pretrained(
|
84 |
+
'mosaicml/mpt-7b',
|
85 |
+
trust_remote_code=True
|
86 |
+
)
|
87 |
```
|
88 |
Note: This model requires that `trust_remote_code=True` be passed to the `from_pretrained` method.
|
89 |
This is because we use a custom `MPT` model architecture that is not yet part of the Hugging Face `transformers` package.
|
|
|
91 |
|
92 |
To use the optimized [triton implementation](https://github.com/openai/triton) of FlashAttention, you can load the model with `attn_impl='triton'` and move the model to `bfloat16`:
|
93 |
```python
|
94 |
+
config = transformers.AutoConfig.from_pretrained(
|
95 |
+
'mosaicml/mpt-7b',
|
96 |
+
trust_remote_code=True
|
97 |
+
)
|
98 |
config.attn_config['attn_impl'] = 'triton'
|
99 |
|
100 |
+
model = transformers.AutoModelForCausalLM.from_pretrained(
|
101 |
+
'mosaicml/mpt-7b',
|
102 |
+
config=config,
|
103 |
+
torch_dtype=torch.bfloat16,
|
104 |
+
trust_remote_code=True
|
105 |
+
)
|
106 |
model.to(device='cuda:0')
|
107 |
```
|
108 |
|
109 |
Although the model was trained with a sequence length of 2048, ALiBi enables users to increase the maximum sequence length during finetuning and/or inference. For example:
|
110 |
|
111 |
```python
|
112 |
+
config = transformers.AutoConfig.from_pretrained(
|
113 |
+
'mosaicml/mpt-7b',
|
114 |
+
trust_remote_code=True
|
115 |
+
)
|
116 |
config.update({"max_seq_len": 4096})
|
117 |
+
model = transformers.AutoModelForCausalLM.from_pretrained(
|
118 |
+
'mosaicml/mpt-7b',
|
119 |
+
config=config,
|
120 |
+
trust_remote_code=True
|
121 |
+
)
|
122 |
```
|
123 |
|
124 |
This model was trained with the [EleutherAI/gpt-neox-20b](https://huggingface.co/EleutherAI/gpt-neox-20b) tokenizer.
|