--- license: gpl-3.0 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: bert-base-chinese-finetuned-ner_0220_J_ORIDATA_FULL_NOMOD results: [] --- # bert-base-chinese-finetuned-ner_0220_J_ORIDATA_FULL_NOMOD This model is a fine-tuned version of [ckiplab/bert-base-chinese-ner](https://huggingface.co/ckiplab/bert-base-chinese-ner) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3786 - Precision: 0.9357 - Recall: 0.9657 - F1: 0.9504 - Accuracy: 0.9577 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0925 | 1.0 | 5358 | 0.2337 | 0.9246 | 0.9655 | 0.9446 | 0.9554 | | 0.0787 | 2.0 | 10716 | 0.2506 | 0.9208 | 0.9588 | 0.9394 | 0.9525 | | 0.0606 | 3.0 | 16074 | 0.2914 | 0.9309 | 0.9621 | 0.9462 | 0.9537 | | 0.0543 | 4.0 | 21432 | 0.2792 | 0.9248 | 0.9633 | 0.9437 | 0.9553 | | 0.056 | 5.0 | 26790 | 0.3064 | 0.9332 | 0.9645 | 0.9486 | 0.9563 | | 0.0384 | 6.0 | 32148 | 0.3317 | 0.9347 | 0.9632 | 0.9487 | 0.9564 | | 0.0265 | 7.0 | 37506 | 0.3340 | 0.9342 | 0.9667 | 0.9502 | 0.9568 | | 0.03 | 8.0 | 42864 | 0.3460 | 0.9363 | 0.9641 | 0.9500 | 0.9558 | | 0.0192 | 9.0 | 48222 | 0.3649 | 0.9357 | 0.9651 | 0.9501 | 0.9576 | | 0.0117 | 10.0 | 53580 | 0.3786 | 0.9357 | 0.9657 | 0.9504 | 0.9577 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.13.0+cu117 - Datasets 2.8.0 - Tokenizers 0.12.1