File size: 2,465 Bytes
52b7ab7 464e27c 52b7ab7 464e27c 52b7ab7 464e27c d232030 464e27c 1632eb5 464e27c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 |
---
language: "it"
license: mit
datasets:
- ARTeLab/ilpost
tags:
- bart
- pytorch
pipeline:
- summarization
---
# BART-IT - Il Post
BART-IT is a sequence-to-sequence model, based on the BART architecture that is specifically tailored to the Italian language. The model is pre-trained on a [large corpus of Italian text](https://huggingface.co/datasets/gsarti/clean_mc4_it), and can be fine-tuned on a variety of tasks.
## Model description
The model is a `base-`sized BART model, with a vocabulary size of 52,000 tokens. It has 140M parameters and can be used for any task that requires a sequence-to-sequence model. It is trained from scratch on a large corpus of Italian text, and can be fine-tuned on a variety of tasks.
## Pre-training
The code used to pre-train BART-IT together with additional information on model parameters can be found [here](https://github.com/MorenoLaQuatra/bart-it).
## Fine-tuning
The model has been fine-tuned for the abstractive summarization task on 3 different Italian datasets:
- [FanPage](https://huggingface.co/datasets/ARTeLab/fanpage) - finetuned model [here](https://huggingface.co/morenolq/bart-it-fanpage)
- **This model** [IlPost](https://huggingface.co/datasets/ARTeLab/ilpost) - finetuned model [here](https://huggingface.co/morenolq/bart-it-ilpost)
- [WITS](https://huggingface.co/datasets/Silvia/WITS) - finetuned model [here](https://huggingface.co/morenolq/bart-it-WITS)
## Usage
In order to use the model, you can use the following code:
```python
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
tokenizer = AutoTokenizer.from_pretrained("morenolq/bart-it-ilpost")
model = AutoModelForSeq2SeqLM.from_pretrained("morenolq/bart-it-ilpost")
input_ids = tokenizer.encode("Il modello BART-IT è stato pre-addestrato su un corpus di testo italiano", return_tensors="pt")
outputs = model.generate(input_ids, max_length=40, num_beams=4, early_stopping=True)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
```
# Citation
If you find this model useful for your research, please cite the following paper:
```bibtex
@Article{BARTIT,
AUTHOR = {La Quatra, Moreno and Cagliero, Luca},
TITLE = {BART-IT: An Efficient Sequence-to-Sequence Model for Italian Text Summarization},
JOURNAL = {Future Internet},
VOLUME = {15},
YEAR = {2023},
NUMBER = {1},
ARTICLE-NUMBER = {15},
URL = {https://www.mdpi.com/1999-5903/15/1/15},
ISSN = {1999-5903},
DOI = {10.3390/fi15010015}
}
```
|