--- license: apache-2.0 base_model: microsoft/swinv2-tiny-patch4-window8-256 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: swinv2-tiny-patch4-window8-256-finetuned-gardner-exp-max results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.8389261744966443 --- # swinv2-tiny-patch4-window8-256-finetuned-gardner-exp-max This model is a fine-tuned version of [microsoft/swinv2-tiny-patch4-window8-256](https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.5312 - Accuracy: 0.8389 ## Model description Predict Expansion Grade - Gardner Score from an embryo image ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 25 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.6068 | 0.97 | 14 | 1.5809 | 0.5415 | | 1.56 | 2.0 | 29 | 1.2830 | 0.5415 | | 1.1852 | 2.97 | 43 | 1.0794 | 0.5415 | | 1.1132 | 4.0 | 58 | 0.9314 | 0.6488 | | 0.9416 | 4.97 | 72 | 0.8935 | 0.6341 | | 0.9143 | 6.0 | 87 | 0.8009 | 0.6829 | | 0.8243 | 6.97 | 101 | 0.8067 | 0.6634 | | 0.8171 | 8.0 | 116 | 0.7783 | 0.6780 | | 0.7901 | 8.97 | 130 | 0.7871 | 0.6585 | | 0.7944 | 10.0 | 145 | 0.7414 | 0.6976 | | 0.7669 | 10.97 | 159 | 0.6977 | 0.7122 | | 0.7478 | 12.0 | 174 | 0.7043 | 0.7122 | | 0.766 | 12.97 | 188 | 0.7778 | 0.6585 | | 0.7322 | 14.0 | 203 | 0.7504 | 0.6780 | | 0.7242 | 14.97 | 217 | 0.7291 | 0.6829 | | 0.7554 | 16.0 | 232 | 0.7694 | 0.6634 | | 0.7422 | 16.97 | 246 | 0.7569 | 0.6829 | | 0.7292 | 18.0 | 261 | 0.7389 | 0.6780 | | 0.7354 | 18.97 | 275 | 0.6684 | 0.7122 | | 0.6847 | 20.0 | 290 | 0.6821 | 0.7122 | | 0.7231 | 20.97 | 304 | 0.6839 | 0.7024 | | 0.6962 | 22.0 | 319 | 0.6958 | 0.6878 | | 0.7079 | 22.97 | 333 | 0.7039 | 0.6878 | | 0.7088 | 24.0 | 348 | 0.6974 | 0.6878 | | 0.7106 | 24.14 | 350 | 0.6975 | 0.6878 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.2 - Datasets 2.16.0 - Tokenizers 0.15.0