monai
medical
katielink commited on
Commit
42b95af
·
1 Parent(s): ab15bef

deterministic retrain benchmark

Browse files
README.md CHANGED
@@ -59,14 +59,14 @@ The training as performed with the following:
59
  - 13: Left adrenal gland
60
 
61
  ## Performance
62
- Dice score was used for evaluating the performance of the model. This model achieves a mean dice score of 0.8120
63
 
64
  #### Training Loss
65
- ![The figure shows the training loss curve for 10K iterations.](https://developer.download.nvidia.com/assets/Clara/Images/monai_swin_unetr_btcv_segmentation_trainloss_v1.png)
66
 
67
  #### Validation Dice
68
 
69
- ![A graph showing the validation mean Dice for 5000 epochs.](https://developer.download.nvidia.com/assets/Clara/Images/monai_swin_unetr_btcv_segmentation_validation_meandice_v1.png)
70
 
71
  ## MONAI Bundle Commands
72
  In addition to the Pythonic APIs, a few command line interfaces (CLI) are provided to interact with the bundle. The CLI supports flexible use cases, such as overriding configs at runtime and predefining arguments in a file.
 
59
  - 13: Left adrenal gland
60
 
61
  ## Performance
62
+ Dice score was used for evaluating the performance of the model. This model achieves a mean dice score of 0.82
63
 
64
  #### Training Loss
65
+ ![The figure shows the training loss curve for 10K iterations.](https://developer.download.nvidia.com/assets/Clara/Images/monai_swin_unetr_btcv_segmentation_train_loss_v2.png)
66
 
67
  #### Validation Dice
68
 
69
+ ![A graph showing the validation mean Dice for 5000 epochs.](https://developer.download.nvidia.com/assets/Clara/Images/monai_swin_unetr_btcv_segmentation_val_dice_v2.png)
70
 
71
  ## MONAI Bundle Commands
72
  In addition to the Pythonic APIs, a few command line interfaces (CLI) are provided to interact with the bundle. The CLI supports flexible use cases, such as overriding configs at runtime and predefining arguments in a file.
configs/evaluate.json CHANGED
@@ -70,9 +70,6 @@
70
  "summary_ops": "*"
71
  }
72
  ],
73
- "initialize": [
74
- "$setattr(torch.backends.cudnn, 'benchmark', True)"
75
- ],
76
  "run": [
77
  "$@validate#evaluator.run()"
78
  ]
 
70
  "summary_ops": "*"
71
  }
72
  ],
 
 
 
73
  "run": [
74
  "$@validate#evaluator.run()"
75
  ]
configs/inference.json CHANGED
@@ -136,7 +136,7 @@
136
  "amp": true
137
  },
138
  "initialize": [
139
- "$setattr(torch.backends.cudnn, 'benchmark', True)"
140
  ],
141
  "run": [
142
 
136
  "amp": true
137
  },
138
  "initialize": [
139
+ "$monai.utils.set_determinism(seed=123)"
140
  ],
141
  "run": [
142
configs/metadata.json CHANGED
@@ -1,7 +1,8 @@
1
  {
2
  "schema": "https://github.com/Project-MONAI/MONAI-extra-test-data/releases/download/0.8.1/meta_schema_20220324.json",
3
- "version": "0.4.6",
4
  "changelog": {
 
5
  "0.4.6": "fix mgpu finalize issue",
6
  "0.4.5": "enable deterministic training",
7
  "0.4.4": "update numbers",
@@ -42,7 +43,7 @@
42
  "label_classes": "multi-channel data,0:background,1:spleen, 2:Right Kidney, 3:Left Kideny, 4:Gallbladder, 5:Esophagus, 6:Liver, 7:Stomach, 8:Aorta, 9:IVC, 10:Portal and Splenic Veins, 11:Pancreas, 12:Right adrenal gland, 13:Left adrenal gland",
43
  "pred_classes": "14 channels OneHot data, 0:background,1:spleen, 2:Right Kidney, 3:Left Kideny, 4:Gallbladder, 5:Esophagus, 6:Liver, 7:Stomach, 8:Aorta, 9:IVC, 10:Portal and Splenic Veins, 11:Pancreas, 12:Right adrenal gland, 13:Left adrenal gland",
44
  "eval_metrics": {
45
- "mean_dice": 0.812
46
  },
47
  "intended_use": "This is an example, not to be used for diagnostic purposes",
48
  "references": [
 
1
  {
2
  "schema": "https://github.com/Project-MONAI/MONAI-extra-test-data/releases/download/0.8.1/meta_schema_20220324.json",
3
+ "version": "0.4.7",
4
  "changelog": {
5
+ "0.4.7": "deterministic retrain benchmark",
6
  "0.4.6": "fix mgpu finalize issue",
7
  "0.4.5": "enable deterministic training",
8
  "0.4.4": "update numbers",
 
43
  "label_classes": "multi-channel data,0:background,1:spleen, 2:Right Kidney, 3:Left Kideny, 4:Gallbladder, 5:Esophagus, 6:Liver, 7:Stomach, 8:Aorta, 9:IVC, 10:Portal and Splenic Veins, 11:Pancreas, 12:Right adrenal gland, 13:Left adrenal gland",
44
  "pred_classes": "14 channels OneHot data, 0:background,1:spleen, 2:Right Kidney, 3:Left Kideny, 4:Gallbladder, 5:Esophagus, 6:Liver, 7:Stomach, 8:Aorta, 9:IVC, 10:Portal and Splenic Veins, 11:Pancreas, 12:Right adrenal gland, 13:Left adrenal gland",
45
  "eval_metrics": {
46
+ "mean_dice": 0.82
47
  },
48
  "intended_use": "This is an example, not to be used for diagnostic purposes",
49
  "references": [
docs/README.md CHANGED
@@ -52,14 +52,14 @@ The training as performed with the following:
52
  - 13: Left adrenal gland
53
 
54
  ## Performance
55
- Dice score was used for evaluating the performance of the model. This model achieves a mean dice score of 0.8120
56
 
57
  #### Training Loss
58
- ![The figure shows the training loss curve for 10K iterations.](https://developer.download.nvidia.com/assets/Clara/Images/monai_swin_unetr_btcv_segmentation_trainloss_v1.png)
59
 
60
  #### Validation Dice
61
 
62
- ![A graph showing the validation mean Dice for 5000 epochs.](https://developer.download.nvidia.com/assets/Clara/Images/monai_swin_unetr_btcv_segmentation_validation_meandice_v1.png)
63
 
64
  ## MONAI Bundle Commands
65
  In addition to the Pythonic APIs, a few command line interfaces (CLI) are provided to interact with the bundle. The CLI supports flexible use cases, such as overriding configs at runtime and predefining arguments in a file.
 
52
  - 13: Left adrenal gland
53
 
54
  ## Performance
55
+ Dice score was used for evaluating the performance of the model. This model achieves a mean dice score of 0.82
56
 
57
  #### Training Loss
58
+ ![The figure shows the training loss curve for 10K iterations.](https://developer.download.nvidia.com/assets/Clara/Images/monai_swin_unetr_btcv_segmentation_train_loss_v2.png)
59
 
60
  #### Validation Dice
61
 
62
+ ![A graph showing the validation mean Dice for 5000 epochs.](https://developer.download.nvidia.com/assets/Clara/Images/monai_swin_unetr_btcv_segmentation_val_dice_v2.png)
63
 
64
  ## MONAI Bundle Commands
65
  In addition to the Pythonic APIs, a few command line interfaces (CLI) are provided to interact with the bundle. The CLI supports flexible use cases, such as overriding configs at runtime and predefining arguments in a file.
models/model.pt CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:5486702e73e4ca3eef492e3b53cf91304302805ae49a9f5159038637da818bda
3
- size 256345027
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:52e7c3114444e41bb14f644e0dd2b7d42d70ad4b4dec0c1bfa4a552a4b92a096
3
+ size 256336065