|
{ |
|
"schema": "https://github.com/Project-MONAI/MONAI-extra-test-data/releases/download/0.8.1/meta_schema_20220324.json", |
|
"version": "0.2.2", |
|
"changelog": { |
|
"0.2.2": "add name tag", |
|
"0.2.1": "fix license Copyright error", |
|
"0.2.0": "update license files", |
|
"0.1.3": "Add training pipeline for fine-tuning models, support MONAI Label active learning", |
|
"0.1.2": "fixed the dimension in convolution according to MONAI 1.0 update", |
|
"0.1.1": "fixed the model state dict name", |
|
"0.1.0": "complete the model package" |
|
}, |
|
"monai_version": "1.0.0", |
|
"pytorch_version": "1.10.0", |
|
"numpy_version": "1.21.2", |
|
"optional_packages_version": { |
|
"nibabel": "3.2.1", |
|
"pytorch-ignite": "0.4.8", |
|
"einops": "0.4.1", |
|
"fire": "0.4.0", |
|
"timm": "0.6.7", |
|
"torchvision": "0.11.1" |
|
}, |
|
"name": "Renal structures UNEST segmentation", |
|
"task": "Renal segmentation", |
|
"description": "A transformer-based model for renal segmentation from CT image", |
|
"authors": "Vanderbilt University + MONAI team", |
|
"copyright": "Copyright (c) MONAI Consortium", |
|
"data_source": "RawData.zip", |
|
"data_type": "nibabel", |
|
"image_classes": "single channel data, intensity scaled to [0, 1]", |
|
"label_classes": "1: Kideny Cortex, 2:Medulla, 3:Pelvicalyceal system", |
|
"pred_classes": "1: Kideny Cortex, 2:Medulla, 3:Pelvicalyceal system", |
|
"eval_metrics": { |
|
"mean_dice": 0.85 |
|
}, |
|
"intended_use": "This is an example, not to be used for diagnostic purposes", |
|
"references": [ |
|
"Tang, Yucheng, et al. 'Self-supervised pre-training of swin transformers for 3d medical image analysis. arXiv preprint arXiv:2111.14791 (2021). https://arxiv.org/abs/2111.14791." |
|
], |
|
"network_data_format": { |
|
"inputs": { |
|
"image": { |
|
"type": "image", |
|
"format": "hounsfield", |
|
"modality": "CT", |
|
"num_channels": 1, |
|
"spatial_shape": [ |
|
96, |
|
96, |
|
96 |
|
], |
|
"dtype": "float32", |
|
"value_range": [ |
|
0, |
|
1 |
|
], |
|
"is_patch_data": true, |
|
"channel_def": { |
|
"0": "image" |
|
} |
|
} |
|
}, |
|
"outputs": { |
|
"pred": { |
|
"type": "image", |
|
"format": "segmentation", |
|
"num_channels": 4, |
|
"spatial_shape": [ |
|
96, |
|
96, |
|
96 |
|
], |
|
"dtype": "float32", |
|
"value_range": [ |
|
0, |
|
1 |
|
], |
|
"is_patch_data": true, |
|
"channel_def": { |
|
"0": "background", |
|
"1": "kidney cortex", |
|
"2": "medulla", |
|
"3": "pelvicalyceal system" |
|
} |
|
} |
|
} |
|
} |
|
} |
|
|