File size: 5,195 Bytes
7f1c808
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
43a5ce6
 
7f1c808
 
 
 
 
 
 
43a5ce6
 
7f1c808
90ffa16
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7f1c808
 
1831a61
7f1c808
 
 
1831a61
0b33588
 
7f1c808
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
---
language:
- ar
license: apache-2.0
base_model: openai/whisper-large
tags:
- whisper-event
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_11_0
metrics:
- wer
model-index:
- name: Whisper Small ar - Mohammed Bakheet
  results:
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: Common Voice 11.0
      type: mozilla-foundation/common_voice_11_0
      config: ar
      split: test
      args: ar
    metrics:
    - name: Wer
      type: wer
      value: 12.614980289093298
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Whisper Small ar - Mohammed Bakheet

نموذج كلام للتعرف على الصوت، هذا النموذج يتميز بدقة عالية في التعرف على الصوت باللغة العربية.

This model is a fine-tuned version of [openai/whisper-large](https://huggingface.co/openai/whisper-large) on the Common Voice 11.0 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1921
- Wer: 12.6150

## Model description

This model is a fine-tuned version of openai/whisper-large on the Common Voice 11.0 dataset. It achieves 12.61 WER.
Data augmentation can be implemented to further improve the model performance.

## Intended uses & limitations

```python
from datasets import load_dataset
from transformers import WhisperProcessor, WhisperForConditionalGeneration
from datasets import Audio

# load the dataset
test_dataset = load_dataset("mozilla-foundation/common_voice_11_0", "ar", split="test", use_auth_token=True, trust_remote_code=True)

# get the processor and model from mohammed/whisper-small-arabic-cv-11
processor = WhisperProcessor.from_pretrained("mohammed/whisper-large-arabic-cv-11")
model = WhisperForConditionalGeneration.from_pretrained("mohammed/whisper-large-arabic-cv-11")
model.config.forced_decoder_ids = None

# resample the audio files to 16000
test_dataset = test_dataset.cast_column("audio", Audio(sampling_rate=16000))

# get 10 exmaples of model transcription
for i in range(10):
  sample = test_dataset[i]["audio"]
  input_features = processor(sample["array"], sampling_rate=sample["sampling_rate"], return_tensors="pt").input_features 
  predicted_ids = model.generate(input_features)
  transcription = processor.batch_decode(predicted_ids, skip_special_tokens=False)
  transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)
  print(f"{i} Reference Sentence: {test_dataset[i]['sentence']}")
  print(f"{i} Predicted Sentence: {transcription[0]}")
```

```
0 Reference Sentence: زارني في أوائل الشهر بدري
0 Predicted Sentence: زارني في أوائل الشهر بدري 
1 Reference Sentence: إبنك بطل.
1 Predicted Sentence: ابنك بطل  
2 Reference Sentence: الواعظ الأمرد هذا الذي
2 Predicted Sentence: أواعز الأمرج هذا الذي 
3 Reference Sentence: سمح له هذا بالتخصص في البرونز الصغير، الذي يتم إنتاجه بشكل رئيسي ومربح للتصدير.
3 Predicted Sentence: سمح له هذا بالتخصص في البلونز الصغير الذي اعتمد منتاجه بشكل رئيسي وغربح للتصدير  
4 Reference Sentence: ألديك قلم ؟
4 Predicted Sentence: ألديك قلم  
5 Reference Sentence: يا نديمي قسم بي الى الصهباء
5 Predicted Sentence: يا نديمي قسم بي إلى الصحباء 
6 Reference Sentence: إنك تكبر المشكلة.
6 Predicted Sentence: إنك تكبر المشكلة  
7 Reference Sentence: يرغب أن يلتقي بك.
7 Predicted Sentence: يرغب أن يلتقي بك  
8 Reference Sentence: إنهم لا يعرفون لماذا حتى.
8 Predicted Sentence: إنهم لا يعرفون لماذا حتى  
9 Reference Sentence: سيسعدني مساعدتك أي وقت تحب.
9 Predicted Sentence: سيسعدني مساعدتك أي وقت تحب  
```

## Training and evaluation data

This model is trained on the Common Voice 11.0 dataset.

## Training procedure

The model is trained on 64 cores CPU, Nvidia A100 GPU with 48 VRAM, and 100GB Disk space. The GPU utilization reached 100%.
Please check the training hyperparameters below.

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 2000
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Wer     |
|:-------------:|:------:|:----:|:---------------:|:-------:|
| 0.1952        | 1.6630 | 1000 | 0.1843          | 14.0098 |
| 0.0339        | 3.3261 | 2000 | 0.1921          | 12.6150 |


### Framework versions

- Transformers 4.43.3
- Pytorch 2.2.0
- Datasets 2.20.0
- Tokenizers 0.19.1