--- license: mit tags: - generated_from_trainer datasets: - imdb metrics: - accuracy base_model: gpt2 model-index: - name: gpt2-imdb-sentiment-classifier results: - task: type: text-classification name: Text Classification dataset: name: imdb type: imdb args: plain_text metrics: - type: accuracy value: 0.9394 name: Accuracy --- # gpt2-imdb-sentiment-classifier This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.1703 - Accuracy: 0.9394 ## Model description More information needed ## Intended uses & limitations This is comparable to [distilbert-imdb](https://huggingface.co/lvwerra/distilbert-imdb) and trained with exactly the same [script](https://huggingface.co/lvwerra/distilbert-imdb/blob/main/distilbert-imdb-training.ipynb) It achieves slightly lower loss (0.1703 vs 0.1903) and slightly higher accuracy (0.9394 vs 0.928) ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.1967 | 1.0 | 1563 | 0.1703 | 0.9394 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.13.1+cu117 - Datasets 2.9.0 - Tokenizers 0.12.1