--- base_model: nvidia/Llama-3.1-Nemotron-70B-Instruct-HF datasets: - nvidia/HelpSteer2 language: - en library_name: transformers license: llama3.1 pipeline_tag: text-generation tags: - nvidia - llama3.1 - mlx inference: false fine-tuning: false --- # mlx-community/nvidia_Llama-3.1-Nemotron-70B-Instruct-HF_4bit The Model [mlx-community/nvidia_Llama-3.1-Nemotron-70B-Instruct-HF_4bit](https://huggingface.co/mlx-community/nvidia_Llama-3.1-Nemotron-70B-Instruct-HF_4bit) was converted to MLX format from [nvidia/Llama-3.1-Nemotron-70B-Instruct-HF](https://huggingface.co/nvidia/Llama-3.1-Nemotron-70B-Instruct-HF) using mlx-lm version **0.19.0**. ## Use with mlx ```bash pip install mlx-lm ``` ```python from mlx_lm import load, generate model, tokenizer = load("mlx-community/nvidia_Llama-3.1-Nemotron-70B-Instruct-HF_4bit") prompt="hello" if hasattr(tokenizer, "apply_chat_template") and tokenizer.chat_template is not None: messages = [{"role": "user", "content": prompt}] prompt = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) response = generate(model, tokenizer, prompt=prompt, verbose=True) ```