prince-canuma commited on
Commit
8a85494
·
verified ·
1 Parent(s): b1731b2

Upload folder using huggingface_hub

Browse files
README.md ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - multilingual
4
+ license: mit
5
+ license_link: https://huggingface.co/microsoft/Phi-3.5-vision-instruct/resolve/main/LICENSE
6
+ pipeline_tag: text-generation
7
+ tags:
8
+ - nlp
9
+ - code
10
+ - vision
11
+ - mlx
12
+ inference:
13
+ parameters:
14
+ temperature: 0.7
15
+ widget:
16
+ - messages:
17
+ - role: user
18
+ content: <|image_1|>Can you describe what you see in the image?
19
+ ---
20
+
21
+ # mlx-community/Phi-3.5-vision-instruct-8bit
22
+ This model was converted to MLX format from [`microsoft/Phi-3.5-vision-instruct`]() using mlx-vlm version **0.0.13**.
23
+ Refer to the [original model card](https://huggingface.co/microsoft/Phi-3.5-vision-instruct) for more details on the model.
24
+ ## Use with mlx
25
+
26
+ ```bash
27
+ pip install -U mlx-vlm
28
+ ```
29
+
30
+ ```bash
31
+ python -m mlx_vlm.generate --model mlx-community/Phi-3.5-vision-instruct-8bit --max-tokens 100 --temp 0.0
32
+ ```
config.json ADDED
@@ -0,0 +1,157 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_attn_implementation": "flash_attention_2",
3
+ "architectures": [
4
+ "Phi3VForCausalLM"
5
+ ],
6
+ "attention_dropout": 0.0,
7
+ "auto_map": {
8
+ "AutoConfig": "configuration_phi3_v.Phi3VConfig",
9
+ "AutoModelForCausalLM": "modeling_phi3_v.Phi3VForCausalLM"
10
+ },
11
+ "bos_token_id": 1,
12
+ "embd_layer": {
13
+ "embedding_cls": "image",
14
+ "hd_transform_order": "sub_glb",
15
+ "projection_cls": "mlp",
16
+ "use_hd_transform": true,
17
+ "with_learnable_separator": true
18
+ },
19
+ "embd_pdrop": 0.0,
20
+ "eos_token_id": 2,
21
+ "hidden_act": "silu",
22
+ "hidden_size": 3072,
23
+ "img_processor": {
24
+ "image_dim_out": 1024,
25
+ "model_name": "openai/clip-vit-large-patch14-336",
26
+ "name": "clip_vision_model",
27
+ "num_img_tokens": 144
28
+ },
29
+ "initializer_range": 0.02,
30
+ "intermediate_size": 8192,
31
+ "max_position_embeddings": 131072,
32
+ "model_type": "phi3_v",
33
+ "num_attention_heads": 32,
34
+ "num_hidden_layers": 32,
35
+ "num_key_value_heads": 32,
36
+ "original_max_position_embeddings": 4096,
37
+ "pad_token_id": 32000,
38
+ "quantization": {
39
+ "group_size": 64,
40
+ "bits": 8
41
+ },
42
+ "resid_pdrop": 0.0,
43
+ "rms_norm_eps": 1e-05,
44
+ "rope_scaling": {
45
+ "long_factor": [
46
+ 1.0800000429153442,
47
+ 1.1100000143051147,
48
+ 1.1399999856948853,
49
+ 1.340000033378601,
50
+ 1.5899999141693115,
51
+ 1.600000023841858,
52
+ 1.6200000047683716,
53
+ 2.620000123977661,
54
+ 3.2300000190734863,
55
+ 3.2300000190734863,
56
+ 4.789999961853027,
57
+ 7.400000095367432,
58
+ 7.700000286102295,
59
+ 9.09000015258789,
60
+ 12.199999809265137,
61
+ 17.670000076293945,
62
+ 24.46000099182129,
63
+ 28.57000160217285,
64
+ 30.420001983642578,
65
+ 30.840002059936523,
66
+ 32.590003967285156,
67
+ 32.93000411987305,
68
+ 42.320003509521484,
69
+ 44.96000289916992,
70
+ 50.340003967285156,
71
+ 50.45000457763672,
72
+ 57.55000305175781,
73
+ 57.93000411987305,
74
+ 58.21000289916992,
75
+ 60.1400032043457,
76
+ 62.61000442504883,
77
+ 62.62000274658203,
78
+ 62.71000289916992,
79
+ 63.1400032043457,
80
+ 63.1400032043457,
81
+ 63.77000427246094,
82
+ 63.93000411987305,
83
+ 63.96000289916992,
84
+ 63.970001220703125,
85
+ 64.02999877929688,
86
+ 64.06999969482422,
87
+ 64.08000183105469,
88
+ 64.12000274658203,
89
+ 64.41000366210938,
90
+ 64.4800033569336,
91
+ 64.51000213623047,
92
+ 64.52999877929688,
93
+ 64.83999633789062
94
+ ],
95
+ "short_factor": [
96
+ 1.08,
97
+ 1.1,
98
+ 1.1300000000000001,
99
+ 1.2800000000000002,
100
+ 1.3100000000000003,
101
+ 1.4500000000000004,
102
+ 1.4500000000000004,
103
+ 1.9500000000000008,
104
+ 2.030000000000001,
105
+ 2.4299999999999926,
106
+ 2.5699999999999896,
107
+ 2.9499999999999815,
108
+ 3.729999999999965,
109
+ 3.869999999999962,
110
+ 4.189999999999955,
111
+ 4.43999999999995,
112
+ 4.6399999999999455,
113
+ 4.979999999999938,
114
+ 5.159999999999934,
115
+ 5.279999999999932,
116
+ 5.759999999999922,
117
+ 5.889999999999919,
118
+ 5.889999999999919,
119
+ 5.969999999999917,
120
+ 6.089999999999915,
121
+ 6.2799999999999105,
122
+ 6.7699999999999,
123
+ 6.8899999999998975,
124
+ 7.109999999999893,
125
+ 7.129999999999892,
126
+ 7.179999999999891,
127
+ 7.289999999999889,
128
+ 7.339999999999888,
129
+ 7.559999999999883,
130
+ 7.619999999999882,
131
+ 7.69999999999988,
132
+ 7.879999999999876,
133
+ 7.879999999999876,
134
+ 7.879999999999876,
135
+ 7.939999999999875,
136
+ 7.949999999999875,
137
+ 7.979999999999874,
138
+ 8.19999999999987,
139
+ 8.439999999999864,
140
+ 8.469999999999864,
141
+ 8.589999999999861,
142
+ 8.809999999999857,
143
+ 8.999999999999853
144
+ ],
145
+ "type": "su"
146
+ },
147
+ "rope_theta": 10000.0,
148
+ "sliding_window": 262144,
149
+ "tie_word_embeddings": false,
150
+ "torch_dtype": "bfloat16",
151
+ "transformers_version": "4.38.1",
152
+ "use_cache": true,
153
+ "vision_config": {
154
+ "intermediate_size": 4096
155
+ },
156
+ "vocab_size": 32064
157
+ }
configuration_phi3_v.py ADDED
@@ -0,0 +1,218 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2024 Microsoft and the HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+
16
+ """ Phi-3-V model configuration"""
17
+
18
+
19
+ from transformers.configuration_utils import PretrainedConfig
20
+ from transformers.utils import logging
21
+
22
+
23
+ logger = logging.get_logger(__name__)
24
+
25
+ PHI3V_PRETRAINED_CONFIG_ARCHIVE_MAP = {
26
+ "microsoft/Phi-3-vision-128k-instruct": "https://huggingface.co/microsoft/Phi-3-vision-128k-instruct/resolve/main/config.json",
27
+ "microsoft/Phi-3.5-vision-instruct": "https://huggingface.co/microsoft/Phi-3.5-vision-instruct/resolve/main/config.json",
28
+ }
29
+
30
+
31
+ class Phi3VConfig(PretrainedConfig):
32
+ r"""
33
+ This is the configuration class to store the configuration of a [`Phi3VModel`]. It is used to instantiate a Phi-3
34
+ model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
35
+ defaults will yield a similar configuration to that of the
36
+ [microsoft/Phi-3-vision-128k-instruct](https://huggingface.co/microsoft/Phi-3-vision-128k-instruct).
37
+
38
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
39
+ documentation from [`PretrainedConfig`] for more information.
40
+
41
+ Args:
42
+ vocab_size (`int`, *optional*, defaults to 32064):
43
+ Vocabulary size of the Phi-3-V model. Defines the number of different tokens that can be represented by the
44
+ `inputs_ids` passed when calling [`Phi3VModel`].
45
+ hidden_size (`int`, *optional*, defaults to 3072):
46
+ Dimension of the hidden representations.
47
+ intermediate_size (`int`, *optional*, defaults to 8192):
48
+ Dimension of the MLP representations.
49
+ num_hidden_layers (`int`, *optional*, defaults to 32):
50
+ Number of hidden layers in the Transformer decoder.
51
+ num_attention_heads (`int`, *optional*, defaults to 32):
52
+ Number of attention heads for each attention layer in the Transformer decoder.
53
+ num_key_value_heads (`int`, *optional*):
54
+ This is the number of key_value heads that should be used to implement Grouped Query Attention. If
55
+ `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
56
+ `num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
57
+ converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
58
+ by meanpooling all the original heads within that group. For more details checkout [this
59
+ paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
60
+ `num_attention_heads`.
61
+ resid_pdrop (`float`, *optional*, defaults to 0.0):
62
+ Dropout probability for mlp outputs.
63
+ embd_pdrop (`int`, *optional*, defaults to 0.0):
64
+ The dropout ratio for the embeddings.
65
+ attention_dropout (`float`, *optional*, defaults to 0.0):
66
+ The dropout ratio after computing the attention scores.
67
+ hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
68
+ The non-linear activation function (function or string) in the decoder.
69
+ max_position_embeddings (`int`, *optional*, defaults to 4096):
70
+ The maximum sequence length that this model might ever be used with.
71
+ original_max_position_embeddings (`int`, *optional*, defaults to 4096):
72
+ The maximum sequence length that this model was trained with. This is used to determine the size of the
73
+ original RoPE embeddings when using long scaling.
74
+ initializer_range (`float`, *optional*, defaults to 0.02):
75
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
76
+ rms_norm_eps (`float`, *optional*, defaults to 1e-05):
77
+ The epsilon value used for the RMSNorm.
78
+ use_cache (`bool`, *optional*, defaults to `True`):
79
+ Whether or not the model should return the last key/values attentions (not used by all models). Only
80
+ relevant if `config.is_decoder=True`. Whether to tie weight embeddings or not.
81
+ tie_word_embeddings (`bool`, *optional*, defaults to `False`):
82
+ Whether to tie weight embeddings
83
+ rope_theta (`float`, *optional*, defaults to 10000.0):
84
+ The base period of the RoPE embeddings.
85
+ rope_scaling (`dict`, *optional*):
86
+ The scaling strategy for the RoPE embeddings. If `None`, no scaling is applied. If a dictionary, it must
87
+ contain the following keys: `type`, `short_factor` and `long_factor`. The `type` must be either `su` or `yarn` and
88
+ the `short_factor` and `long_factor` must be lists of numbers with the same length as the hidden size
89
+ divided by the number of attention heads divided by 2.
90
+ bos_token_id (`int`, *optional*, defaults to 1):
91
+ The id of the "beginning-of-sequence" token.
92
+ eos_token_id (`int`, *optional*, defaults to 32000):
93
+ The id of the "end-of-sequence" token.
94
+ pad_token_id (`int`, *optional*, defaults to 32000):
95
+ The id of the padding token.
96
+ sliding_window (`int`, *optional*):
97
+ Sliding window attention window size. If `None`, no sliding window is applied.
98
+ embd_layer (`str`, *optional*, defaults to `"default"`):
99
+ The embedding layer to use. Can be either `"default"` or `"image"`. "default" uses the standard embedding for text.
100
+
101
+ Example:
102
+
103
+ ```python
104
+ >>> from transformers import Phi3VModel, Phi3VConfig
105
+
106
+ >>> # Initializing a Phi-3-V style configuration
107
+ >>> configuration = Phi3Config.from_pretrained("microsoft/Phi-3-vision-128k-instruct")
108
+
109
+ >>> # Initializing a model from the configuration
110
+ >>> model = Phi3VModel(configuration)
111
+
112
+ >>> # Accessing the model configuration
113
+ >>> configuration = model.config
114
+ ```"""
115
+
116
+ model_type = "phi3_v"
117
+ keys_to_ignore_at_inference = ["past_key_values"]
118
+
119
+ def __init__(
120
+ self,
121
+ vocab_size=32064,
122
+ hidden_size=3072,
123
+ intermediate_size=8192,
124
+ num_hidden_layers=32,
125
+ num_attention_heads=32,
126
+ num_key_value_heads=None,
127
+ resid_pdrop=0.0,
128
+ embd_pdrop=0.0,
129
+ attention_dropout=0.0,
130
+ hidden_act="silu",
131
+ max_position_embeddings=4096,
132
+ original_max_position_embeddings=4096,
133
+ initializer_range=0.02,
134
+ rms_norm_eps=1e-5,
135
+ use_cache=True,
136
+ tie_word_embeddings=False,
137
+ rope_theta=10000.0,
138
+ rope_scaling=None,
139
+ bos_token_id=1,
140
+ eos_token_id=32000,
141
+ pad_token_id=32000,
142
+ sliding_window=None,
143
+ embd_layer: str = "default",
144
+ **kwargs,
145
+ ):
146
+ self.vocab_size = vocab_size
147
+ self.hidden_size = hidden_size
148
+ self.intermediate_size = intermediate_size
149
+ self.num_hidden_layers = num_hidden_layers
150
+ self.num_attention_heads = num_attention_heads
151
+
152
+ if num_key_value_heads is None:
153
+ num_key_value_heads = num_attention_heads
154
+
155
+ self.num_key_value_heads = num_key_value_heads
156
+ self.resid_pdrop = resid_pdrop
157
+ self.embd_pdrop = embd_pdrop
158
+ self.attention_dropout = attention_dropout
159
+ self.hidden_act = hidden_act
160
+ self.max_position_embeddings = max_position_embeddings
161
+ self.original_max_position_embeddings = original_max_position_embeddings
162
+ self.initializer_range = initializer_range
163
+ self.rms_norm_eps = rms_norm_eps
164
+ self.use_cache = use_cache
165
+ self.rope_theta = rope_theta
166
+ self.rope_scaling = rope_scaling
167
+ self._rope_scaling_validation()
168
+ self.sliding_window = sliding_window
169
+ self.embd_layer = embd_layer
170
+
171
+
172
+ super().__init__(
173
+ bos_token_id=bos_token_id,
174
+ eos_token_id=eos_token_id,
175
+ pad_token_id=pad_token_id,
176
+ tie_word_embeddings=tie_word_embeddings,
177
+ **kwargs,
178
+ )
179
+
180
+ def _rope_scaling_validation(self):
181
+ """
182
+ Validate the `rope_scaling` configuration.
183
+ """
184
+ if self.rope_scaling is None:
185
+ return
186
+
187
+ if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 3:
188
+ raise ValueError(
189
+ "`rope_scaling` must be a dictionary with three fields, `type`, `short_factor` and `long_factor`, "
190
+ f"got {self.rope_scaling}"
191
+ )
192
+ rope_scaling_type = self.rope_scaling.get("type", None)
193
+ rope_scaling_short_factor = self.rope_scaling.get("short_factor", None)
194
+ rope_scaling_long_factor = self.rope_scaling.get("long_factor", None)
195
+ if rope_scaling_type is None or rope_scaling_type not in ["su", "yarn"]:
196
+ raise ValueError(f"`rope_scaling`'s type field must be one of ['su', 'yarn'], got {rope_scaling_type}")
197
+ if not (
198
+ isinstance(rope_scaling_short_factor, list)
199
+ and all(isinstance(x, (int, float)) for x in rope_scaling_short_factor)
200
+ ):
201
+ raise ValueError(
202
+ f"`rope_scaling`'s short_factor field must be a list of numbers, got {rope_scaling_short_factor}"
203
+ )
204
+ if not len(rope_scaling_short_factor) == self.hidden_size // self.num_attention_heads // 2:
205
+ raise ValueError(
206
+ f"`rope_scaling`'s short_factor field must have length {self.hidden_size // self.num_attention_heads // 2}, got {len(rope_scaling_short_factor)}"
207
+ )
208
+ if not (
209
+ isinstance(rope_scaling_long_factor, list)
210
+ and all(isinstance(x, (int, float)) for x in rope_scaling_long_factor)
211
+ ):
212
+ raise ValueError(
213
+ f"`rope_scaling`'s long_factor field must be a list of numbers, got {rope_scaling_long_factor}"
214
+ )
215
+ if not len(rope_scaling_long_factor) == self.hidden_size // self.num_attention_heads // 2:
216
+ raise ValueError(
217
+ f"`rope_scaling`'s long_factor field must have length {self.hidden_size // self.num_attention_heads // 2}, got {len(rope_scaling_long_factor)}"
218
+ )
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8b5da7bf4b4af0e4716058483ff5ba1ca1e2eafd35dc04e051cadb3cdc010282
3
+ size 4407019904
model.safetensors.index.json ADDED
The diff for this file is too large to render. See raw diff
 
modeling_phi3_v.py ADDED
@@ -0,0 +1,1935 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2024 Microsoft and the HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+
16
+ """ PyTorch Phi-3-V model."""
17
+
18
+ import inspect
19
+ import math
20
+ import warnings
21
+ from typing import List, Optional, Tuple, Union
22
+
23
+ import torch
24
+ import torch.nn.functional as F
25
+ import torch.utils.checkpoint
26
+ from torch import nn
27
+ from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
28
+
29
+ from transformers.activations import ACT2FN
30
+ from transformers.cache_utils import Cache, DynamicCache
31
+ from transformers.modeling_attn_mask_utils import _prepare_4d_causal_attention_mask
32
+ from transformers.modeling_outputs import (
33
+ BaseModelOutputWithPast,
34
+ CausalLMOutputWithPast,
35
+ SequenceClassifierOutputWithPast,
36
+ TokenClassifierOutput,
37
+ )
38
+ from transformers.modeling_utils import PreTrainedModel
39
+ from transformers.utils import (
40
+ add_code_sample_docstrings,
41
+ add_start_docstrings,
42
+ add_start_docstrings_to_model_forward,
43
+ is_flash_attn_greater_or_equal_2_10,
44
+ logging,
45
+ replace_return_docstrings,
46
+ )
47
+ from .configuration_phi3_v import Phi3VConfig
48
+
49
+ try:
50
+ from flash_attn import flash_attn_func, flash_attn_varlen_func
51
+ from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa
52
+
53
+ _flash_supports_window_size = "window_size" in list(inspect.signature(flash_attn_func).parameters)
54
+ except ImportError:
55
+ pass
56
+
57
+ import torch
58
+ from torch import nn
59
+ from transformers import CLIPVisionConfig, CLIPVisionModel, PretrainedConfig
60
+ from transformers.models.clip.modeling_clip import CLIPAttention
61
+ from transformers.utils import logging
62
+
63
+ logger = logging.get_logger(__name__)
64
+
65
+
66
+ MAX_INPUT_ID = int(1e9)
67
+
68
+ CLIP_VIT_LARGE_PATCH14_336_CONFIG = CLIPVisionConfig(
69
+ attention_dropout=0.0,
70
+ dropout=0.0,
71
+ hidden_act="quick_gelu",
72
+ hidden_size=1024,
73
+ image_size=336,
74
+ initializer_factor=1.0,
75
+ initializer_range=0.02,
76
+ intermediate_size=4096,
77
+ layer_norm_eps=1e-05,
78
+ num_attention_heads=16,
79
+ num_channels=3,
80
+ num_hidden_layers=24,
81
+ patch_size=14,
82
+ projection_dim=768
83
+ )
84
+
85
+ class CLIPAttentionFA2(CLIPAttention):
86
+ """Add flash attention 2 to CLIPAttention. (This is only used in the vision encoder)"""
87
+
88
+ def forward(self,
89
+ hidden_states,
90
+ attention_mask=None,
91
+ causal_attention_mask=None,
92
+ output_attentions=False,
93
+ ):
94
+ """Input shape: Batch x Time x Channel"""
95
+
96
+ assert attention_mask is None, "CLIPAttentionFA2 does not support attention_mask"
97
+ assert causal_attention_mask is None, "CLIPAttentionFA2 does not support causal_attention_mask"
98
+ assert output_attentions is False, "CLIPAttentionFA2 does not support output_attentions"
99
+
100
+ bsz, tgt_len, embed_dim = hidden_states.size()
101
+ query_states = self.q_proj(hidden_states).reshape(bsz, tgt_len, self.num_heads, self.head_dim)
102
+ key_states = self.k_proj(hidden_states).reshape(bsz, tgt_len, self.num_heads, self.head_dim)
103
+ value_states = self.v_proj(hidden_states).reshape(bsz, tgt_len, self.num_heads, self.head_dim)
104
+
105
+ attn_output = flash_attn_func(
106
+ query_states,
107
+ key_states,
108
+ value_states,
109
+ dropout_p=self.dropout if self.training else 0.0,
110
+ softmax_scale=self.scale,
111
+ causal=False,
112
+ ).reshape(bsz, tgt_len, embed_dim)
113
+
114
+ attn_output = self.out_proj(attn_output)
115
+ return attn_output, None
116
+
117
+
118
+ class Phi3ImageEmbedding(nn.Module):
119
+ """Phi3 Image embedding."""
120
+
121
+ def __init__(self, config: PretrainedConfig, wte=None, **kwargs) -> None:
122
+ super().__init__()
123
+
124
+ # n_embed or hidden_size
125
+ hidden_size = config.n_embd if hasattr(config, 'n_embd') else config.hidden_size
126
+ if hasattr(config, 'embd_pdrop') or hasattr(config, 'embed_pdrop'):
127
+ embd_drop = config.embd_pdrop if hasattr(config, 'embd_pdrop') else config.embed_pdrop
128
+ self.drop = nn.Dropout(embd_drop)
129
+ else:
130
+ self.drop = None
131
+
132
+ self.wte = wte
133
+
134
+ if isinstance(config.img_processor, dict) and config.img_processor.get('name', None) == 'clip_vision_model':
135
+ assert 'model_name' in config.img_processor, 'model_name must be provided for CLIPVisionModel'
136
+ assert 'image_dim_out' in config.img_processor, 'image_dim_out must be provided for CLIPVisionModel'
137
+ assert 'num_img_tokens' in config.img_processor, 'num_img_tokens must be provided for CLIPVisionModel'
138
+ assert config.img_processor['model_name'] == 'openai/clip-vit-large-patch14-336'
139
+ clip_config = CLIP_VIT_LARGE_PATCH14_336_CONFIG
140
+ self.img_processor = CLIPVisionModel(clip_config)
141
+ image_dim_out = config.img_processor['image_dim_out']
142
+ self.num_img_tokens = config.img_processor['num_img_tokens']
143
+
144
+ # FA2 in CLIP
145
+ if config._attn_implementation == 'flash_attention_2':
146
+ for layer in self.img_processor.vision_model.encoder.layers:
147
+ clip_fa2 = CLIPAttentionFA2(clip_config)
148
+ del layer.self_attn
149
+ layer.self_attn = clip_fa2
150
+ else:
151
+ raise NotImplementedError(f'img_processor = {config.img_processor}, not implemented')
152
+
153
+ self.image_dim_out = image_dim_out
154
+ self.img_sizes = None
155
+
156
+ # global_gn and sub_gn for hd transform, serves as line separator
157
+ self.use_hd_transform = kwargs.get('use_hd_transform', False)
158
+ self.with_learnable_separator = kwargs.get('with_learnable_separator', False)
159
+ self.hd_transform_order = kwargs.get('hd_transform_order', 'glb_sub')
160
+ # with_hd_transform and with_learnable_separator should have same value
161
+ assert self.use_hd_transform == self.with_learnable_separator, 'use_hd_transform and with_learnable_separator should have same value'
162
+ if self.with_learnable_separator:
163
+ assert self.use_hd_transform, 'learnable separator is only for hd transform'
164
+ # 1024 * 4, merge spatial to channel dimension
165
+ self.glb_GN = nn.Parameter(torch.zeros([1, 1, self.image_dim_out * 4]))
166
+ self.sub_GN = nn.Parameter(torch.zeros([1, 1, 1, self.image_dim_out * 4]))
167
+ logger.info(f'learnable separator enabled for hd transform, hd_transform_order = {self.hd_transform_order}')
168
+
169
+ projection_cls = kwargs.get('projection_cls', 'linear')
170
+ if projection_cls == 'linear':
171
+ self.img_projection = nn.Linear(image_dim_out, hidden_size)
172
+ elif projection_cls == 'mlp' and self.use_hd_transform:
173
+ dim_projection = hidden_size
174
+ depth = 2
175
+ layers = [nn.Linear(image_dim_out * 4, dim_projection)]
176
+ for _ in range(1, depth):
177
+ layers.extend([nn.GELU(),
178
+ nn.Linear(dim_projection, dim_projection)])
179
+ self.img_projection = nn.Sequential(*layers)
180
+ elif projection_cls == 'mlp':
181
+ dim_projection = hidden_size
182
+ depth = 2
183
+ layers = [nn.Linear(image_dim_out, dim_projection)]
184
+ for _ in range(1, depth):
185
+ layers.extend([nn.GELU(),
186
+ nn.Linear(dim_projection, dim_projection)])
187
+ self.img_projection = nn.Sequential(*layers)
188
+ else:
189
+ raise NotImplementedError(f'projection_cls = {projection_cls}, not implemented')
190
+
191
+ self.vocab_size = config.vocab_size
192
+ self.img_features = None
193
+
194
+ if isinstance(config.img_processor, dict):
195
+ self.layer_idx = config.img_processor.get('layer_idx', -2)
196
+ self.type_feature = config.img_processor.get('type_feature', 'patch')
197
+ else:
198
+ self.layer_idx = -2
199
+ self.type_feature = 'patch'
200
+
201
+
202
+ def set_img_features(self, img_features: torch.FloatTensor) -> None:
203
+ self.img_features = img_features
204
+
205
+ def set_img_sizes(self, img_sizes: torch.LongTensor) -> None:
206
+ self.img_sizes = img_sizes
207
+
208
+ def get_img_features(self, img_embeds: torch.FloatTensor) -> torch.FloatTensor:
209
+ LAYER_IDX = self.layer_idx
210
+ TYPE_FEATURE = self.type_feature
211
+
212
+ img_processor_output = self.img_processor(img_embeds, output_hidden_states=True)
213
+ img_feature = img_processor_output.hidden_states[LAYER_IDX]
214
+
215
+ if TYPE_FEATURE == "patch":
216
+ patch_feature = img_feature[:, 1:]
217
+ return patch_feature
218
+
219
+ raise NotImplementedError
220
+
221
+ def forward(
222
+ self, input_ids: torch.LongTensor, pixel_values: torch.FloatTensor, image_sizes=None
223
+ ) -> torch.FloatTensor:
224
+ input_shape = input_ids.size()
225
+ input_ids = input_ids.view(-1, input_shape[-1])
226
+
227
+ # positions for image tokens
228
+ positions = torch.nonzero((input_ids < 0) & (input_ids > -MAX_INPUT_ID), as_tuple=True)
229
+ has_image = len(positions[0].tolist()) > 0
230
+ input_ids = input_ids.clamp_min(0).clamp_max(self.vocab_size).detach()
231
+ hidden_states = self.wte(input_ids)
232
+
233
+ if has_image:
234
+ assert self.use_hd_transform
235
+ num_images, num_crops, c, h, w = pixel_values.shape
236
+ assert c == 3 and h == w == 336
237
+ img_features = self.get_img_features(pixel_values.flatten(0, 1)).reshape(
238
+ num_images, num_crops, -1, self.image_dim_out
239
+ )
240
+ image_features_proj = self.hd_feature_transform(img_features, image_sizes)
241
+ hidden_states = hidden_states.index_put(
242
+ positions, image_features_proj, accumulate=False
243
+ )
244
+
245
+ if self.drop is not None:
246
+ hidden_states = self.drop(hidden_states)
247
+
248
+ return hidden_states
249
+
250
+ def hd_feature_transform(self, image_features, image_sizes):
251
+ """
252
+ image_features: (num_images, num_crops+1, 24*24, 1024)
253
+ """
254
+ assert (
255
+ self.hd_transform_order == 'sub_glb'
256
+ ), f'hd_transform_order `{self.hd_transform_order}` not implemented'
257
+ if isinstance(self.img_projection, nn.Sequential):
258
+ target_device = self.img_projection[0].bias.device
259
+ target_dtype = self.img_projection[0].bias.dtype
260
+ else: # It's a single nn.Linear layer
261
+ target_device = self.img_projection.bias.device
262
+ target_dtype = self.img_projection.bias.dtype
263
+
264
+ global_image_features = image_features[:, 0] # (num_images, 24*24, 1024)
265
+ # global feature can be viewed as a special HD case with num_crops 1x1
266
+ global_image_features_hd = self.reshape_hd_patches_2x2merge(global_image_features, 1, 1)
267
+ global_image_features_hd_newline = self.add_image_newline(global_image_features_hd)
268
+
269
+ all_image_embeddings = []
270
+ # need a for loop to process each image because of different image sizes
271
+ # (patch arrangement is different for each image)
272
+ for i, img_size in enumerate(image_sizes):
273
+ h, w = img_size
274
+ h_crop = h // 336
275
+ w_crop = w // 336
276
+ num_crops = h_crop * w_crop
277
+
278
+ # NOTE: real num_crops is padded
279
+ # (num_crops, 24*24, 1024)
280
+ sub_image_features = image_features[i, 1 : 1 + num_crops]
281
+ sub_image_features_hd = self.reshape_hd_patches_2x2merge(
282
+ sub_image_features, h_crop, w_crop
283
+ )
284
+ sub_image_features_hd_newline = self.add_image_newline(sub_image_features_hd)
285
+
286
+ # [sub features, separator, global features]
287
+ all_image_embeddings.extend(
288
+ [
289
+ sub_image_features_hd_newline.squeeze(0), # (h_crop*12*(w_crop*12+1), 4096)
290
+ self.glb_GN.squeeze(0),
291
+ global_image_features_hd_newline[i],
292
+ ]
293
+ )
294
+
295
+ image_features_proj = self.img_projection(
296
+ torch.cat(all_image_embeddings, dim=0).to(target_device).to(target_dtype)
297
+ )
298
+
299
+ return image_features_proj
300
+
301
+ def reshape_hd_patches_2x2merge(self, image_features, h_crop, w_crop):
302
+ """
303
+ image_features: (num_images*num_crops, 24*24, 1024)
304
+ output: (num_images, h_crop*12, w_crop*12, 4096), h_crop*w_crop == num_crops
305
+ """
306
+ N, L, C = image_features.shape
307
+ assert L == 24 * 24 and C == 1024 and N % (h_crop * w_crop) == 0
308
+ num_images = N // (h_crop * w_crop)
309
+ H = int(L**0.5)
310
+ image_features_hd = (
311
+ image_features.reshape(N, H, H, C) # N, 24, 24, 1024
312
+ .reshape(N, H // 2, 2, H // 2, 2, C) # N, 12, 2, 12, 2, 1024
313
+ .permute(0, 1, 3, 2, 4, 5) # N, 12, 12, 2, 2, 1024
314
+ .reshape(N, -1, 4 * C) # N, 144, 4096
315
+ .reshape(
316
+ num_images, h_crop, w_crop, H // 2, H // 2, -1
317
+ ) # n_img, h_crop, w_crop, 12, 12, 4096
318
+ .permute(0, 1, 3, 2, 4, 5) # n_img, h_crop, 12, w_crop, 12, 4096
319
+ .reshape(
320
+ num_images, h_crop * H // 2, w_crop * H // 2, 4 * C
321
+ ) # n_img, h_crop*12, w_crop*12, 4096
322
+ )
323
+
324
+ # alternative implementation using einops
325
+ # from einops import rearrange
326
+ # image_features_nhwc = rearrange(
327
+ # image_features,
328
+ # 'N (H W) c -> N H W c',
329
+ # H=H,
330
+ # W=H,
331
+ # )
332
+ # image_features_2x2merge = rearrange(
333
+ # image_features_nhwc,
334
+ # 'N (h h_pool) (w w_pool) c -> N h w (h_pool w_pool c)',
335
+ # h_pool=2,
336
+ # w_pool=2,
337
+ # )
338
+ # image_features_hd = rearrange(
339
+ # image_features_2x2merge,
340
+ # '(n_img h_crop w_crop) h w C -> n_img (h_crop h) (w_crop w) C',
341
+ # h_crop=h_crop,
342
+ # w_crop=w_crop,
343
+ # )
344
+
345
+ return image_features_hd
346
+
347
+ def add_image_newline(self, image_features_hd):
348
+ """
349
+ image_features_hd: (num_images, h_crop*12, w_crop*12, 4096)
350
+ output: (num_images, (h_crop*12) * (w_crop*12+1), 4096)
351
+ """
352
+ num_images, h, w, hid_dim = image_features_hd.shape
353
+ # add the newline token to the HD image feature patches
354
+ newline_embeddings = self.sub_GN.expand(num_images, h, -1, -1) # (n_img, h, 1, hid_dim)
355
+ image_features_hd_newline = torch.cat(
356
+ [image_features_hd, newline_embeddings], dim=2
357
+ ).reshape(num_images, -1, hid_dim)
358
+ return image_features_hd_newline
359
+
360
+
361
+ logger = logging.get_logger(__name__)
362
+
363
+ _CHECKPOINT_FOR_DOC = "microsoft/Phi-3-vision-128k-instruct"
364
+ _CONFIG_FOR_DOC = "Phi3VConfig"
365
+
366
+ PHI3V_PRETRAINED_MODEL_ARCHIVE_LIST = [
367
+ "microsoft/Phi-3-vision-128k-instruct",
368
+ # See all Phi-3 models at https://huggingface.co/models?filter=Phi-3
369
+ ]
370
+
371
+
372
+ # Copied from transformers.models.llama.modeling_llama.LlamaRMSNorm with Llama->Phi3
373
+ class Phi3RMSNorm(nn.Module):
374
+ def __init__(self, hidden_size, eps=1e-6):
375
+ """
376
+ Phi3RMSNorm is equivalent to T5LayerNorm
377
+ """
378
+ super().__init__()
379
+ self.weight = nn.Parameter(torch.ones(hidden_size))
380
+ self.variance_epsilon = eps
381
+
382
+ def forward(self, hidden_states):
383
+ input_dtype = hidden_states.dtype
384
+ hidden_states = hidden_states.to(torch.float32)
385
+ variance = hidden_states.pow(2).mean(-1, keepdim=True)
386
+ hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
387
+ return self.weight * hidden_states.to(input_dtype)
388
+
389
+
390
+ # Copied from transformers.models.llama.modeling_llama._get_unpad_data
391
+ def _get_unpad_data(attention_mask):
392
+ seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
393
+ indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
394
+ max_seqlen_in_batch = seqlens_in_batch.max().item()
395
+ cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0))
396
+ return (
397
+ indices,
398
+ cu_seqlens,
399
+ max_seqlen_in_batch,
400
+ )
401
+
402
+
403
+ # Copied from transformers.models.gemma.modeling_gemma.GemmaRotaryEmbedding with gemma->phi3, Gemma->Phi3
404
+ class Phi3RotaryEmbedding(nn.Module):
405
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
406
+ super().__init__()
407
+
408
+ self.dim = dim
409
+ self.max_position_embeddings = max_position_embeddings
410
+ self.base = base
411
+ self.register_buffer("inv_freq", None, persistent=False)
412
+
413
+ @torch.no_grad()
414
+ def forward(self, x, position_ids, seq_len=None):
415
+ # x: [bs, num_attention_heads, seq_len, head_size]
416
+ if self.inv_freq is None:
417
+ self.inv_freq = 1.0 / (
418
+ self.base ** (torch.arange(0, self.dim, 2, dtype=torch.int64, device=x.device).float() / self.dim)
419
+ )
420
+ inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
421
+ position_ids_expanded = position_ids[:, None, :].float()
422
+ # Force float32 since bfloat16 loses precision on long contexts
423
+ # See https://github.com/huggingface/transformers/pull/29285
424
+ device_type = x.device.type
425
+ device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu"
426
+ with torch.autocast(device_type=device_type, enabled=False):
427
+ freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
428
+ emb = torch.cat((freqs, freqs), dim=-1)
429
+ cos = emb.cos()
430
+ sin = emb.sin()
431
+ return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
432
+
433
+
434
+ class Phi3SuScaledRotaryEmbedding(Phi3RotaryEmbedding):
435
+ def __init__(self, dim, config, device=None):
436
+ super().__init__(dim, config.max_position_embeddings, config.rope_theta, device)
437
+
438
+ self.short_factor = config.rope_scaling["short_factor"]
439
+ self.long_factor = config.rope_scaling["long_factor"]
440
+ self.original_max_position_embeddings = config.original_max_position_embeddings
441
+
442
+ @torch.no_grad()
443
+ def forward(self, x, position_ids, seq_len=None):
444
+ seq_len = torch.max(position_ids) + 1
445
+ if seq_len > self.original_max_position_embeddings:
446
+ ext_factors = torch.tensor(self.long_factor, dtype=torch.float32, device=x.device)
447
+ else:
448
+ ext_factors = torch.tensor(self.short_factor, dtype=torch.float32, device=x.device)
449
+
450
+ inv_freq_shape = torch.arange(0, self.dim, 2, dtype=torch.int64, device=x.device).float() / self.dim
451
+ self.inv_freq = 1.0 / (ext_factors * self.base**inv_freq_shape)
452
+
453
+ inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
454
+ position_ids_expanded = position_ids[:, None, :].float()
455
+
456
+ # Force float32 since bfloat16 loses precision on long contexts
457
+ # See https://github.com/huggingface/transformers/pull/29285
458
+ device_type = x.device.type
459
+ device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu"
460
+ with torch.autocast(device_type=device_type, enabled=False):
461
+ freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
462
+ emb = torch.cat((freqs, freqs), dim=-1)
463
+
464
+ scale = self.max_position_embeddings / self.original_max_position_embeddings
465
+ if scale <= 1.0:
466
+ scaling_factor = 1.0
467
+ else:
468
+ scaling_factor = math.sqrt(1 + math.log(scale) / math.log(self.original_max_position_embeddings))
469
+
470
+ cos = emb.cos() * scaling_factor
471
+ sin = emb.sin() * scaling_factor
472
+ return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
473
+
474
+
475
+ class Phi3YarnScaledRotaryEmbedding(Phi3RotaryEmbedding):
476
+ def __init__(self, dim, config, device=None):
477
+ super().__init__(dim, config.max_position_embeddings, config.rope_theta, device)
478
+
479
+ self.short_factor = config.rope_scaling["short_factor"]
480
+ self.long_factor = config.rope_scaling["long_factor"]
481
+ self.original_max_position_embeddings = config.original_max_position_embeddings
482
+
483
+ @torch.no_grad()
484
+ def forward(self, x, position_ids, seq_len=None):
485
+ seq_len = torch.max(position_ids) + 1
486
+ if seq_len > self.original_max_position_embeddings:
487
+ ext_factors = torch.tensor(self.long_factor, dtype=torch.float32, device=x.device)
488
+ else:
489
+ ext_factors = torch.tensor(self.short_factor, dtype=torch.float32, device=x.device)
490
+
491
+ inv_freq_shape = torch.arange(0, self.dim, 2, dtype=torch.int64, device=x.device).float() / self.dim
492
+ self.inv_freq = 1.0 / (ext_factors * self.base**inv_freq_shape)
493
+
494
+ inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
495
+ position_ids_expanded = position_ids[:, None, :].float()
496
+
497
+ # Force float32 since bfloat16 loses precision on long contexts
498
+ # See https://github.com/huggingface/transformers/pull/29285
499
+ device_type = x.device.type
500
+ device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu"
501
+ with torch.autocast(device_type=device_type, enabled=False):
502
+ freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
503
+ emb = torch.cat((freqs, freqs), dim=-1)
504
+
505
+ scale = self.max_position_embeddings / self.original_max_position_embeddings
506
+ if scale <= 1.0:
507
+ scaling_factor = 1.0
508
+ else:
509
+ scaling_factor = 0.1 * math.log(scale) + 1.0
510
+
511
+ cos = emb.cos() * scaling_factor
512
+ sin = emb.sin() * scaling_factor
513
+ return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
514
+
515
+
516
+ # Copied from transformers.models.llama.modeling_llama.rotate_half
517
+ def rotate_half(x):
518
+ """Rotates half the hidden dims of the input."""
519
+ x1 = x[..., : x.shape[-1] // 2]
520
+ x2 = x[..., x.shape[-1] // 2 :]
521
+ return torch.cat((-x2, x1), dim=-1)
522
+
523
+
524
+ # Copied from transformers.models.llama.modeling_llama.apply_rotary_pos_emb
525
+ def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
526
+ """Applies Rotary Position Embedding to the query and key tensors.
527
+
528
+ Args:
529
+ q (`torch.Tensor`): The query tensor.
530
+ k (`torch.Tensor`): The key tensor.
531
+ cos (`torch.Tensor`): The cosine part of the rotary embedding.
532
+ sin (`torch.Tensor`): The sine part of the rotary embedding.
533
+ position_ids (`torch.Tensor`, *optional*):
534
+ Deprecated and unused.
535
+ unsqueeze_dim (`int`, *optional*, defaults to 1):
536
+ The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
537
+ sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
538
+ that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
539
+ k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
540
+ cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
541
+ the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
542
+ Returns:
543
+ `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
544
+ """
545
+ cos = cos.unsqueeze(unsqueeze_dim)
546
+ sin = sin.unsqueeze(unsqueeze_dim)
547
+ q_embed = (q * cos) + (rotate_half(q) * sin)
548
+ k_embed = (k * cos) + (rotate_half(k) * sin)
549
+ return q_embed, k_embed
550
+
551
+
552
+ class Phi3MLP(nn.Module):
553
+ def __init__(self, config):
554
+ super().__init__()
555
+
556
+ self.config = config
557
+ self.gate_up_proj = nn.Linear(config.hidden_size, 2 * config.intermediate_size, bias=False)
558
+ self.down_proj = nn.Linear(config.intermediate_size, config.hidden_size, bias=False)
559
+
560
+ self.activation_fn = ACT2FN[config.hidden_act]
561
+
562
+ def forward(self, hidden_states: torch.FloatTensor) -> torch.FloatTensor:
563
+ up_states = self.gate_up_proj(hidden_states)
564
+
565
+ gate, up_states = up_states.chunk(2, dim=-1)
566
+ up_states = up_states * self.activation_fn(gate)
567
+
568
+ return self.down_proj(up_states)
569
+
570
+
571
+ # Copied from transformers.models.llama.modeling_llama.repeat_kv with llama->phi
572
+ def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
573
+ """
574
+ This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
575
+ num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
576
+ """
577
+ batch, num_key_value_heads, slen, head_dim = hidden_states.shape
578
+ if n_rep == 1:
579
+ return hidden_states
580
+ hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
581
+ return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
582
+
583
+
584
+ class Phi3Attention(nn.Module):
585
+ """Multi-headed attention from 'Attention Is All You Need' paper"""
586
+
587
+ def __init__(self, config: Phi3VConfig, layer_idx: Optional[int] = None):
588
+ super().__init__()
589
+ self.config = config
590
+ self.layer_idx = layer_idx
591
+ if layer_idx is None:
592
+ logger.warning_once(
593
+ f"Instantiating {self.__class__.__name__} without passing a `layer_idx` is not recommended and will "
594
+ "lead to errors during the forward call if caching is used. Please make sure to provide a `layer_idx` "
595
+ "when creating this class."
596
+ )
597
+
598
+ self.attention_dropout = config.attention_dropout
599
+ self.hidden_size = config.hidden_size
600
+ self.num_heads = config.num_attention_heads
601
+ self.head_dim = self.hidden_size // self.num_heads
602
+ self.num_key_value_heads = config.num_key_value_heads
603
+ self.num_key_value_groups = self.num_heads // self.num_key_value_heads
604
+ self.max_position_embeddings = config.max_position_embeddings
605
+ self.original_max_position_embeddings = config.original_max_position_embeddings
606
+ self.rope_theta = config.rope_theta
607
+ self.rope_scaling = config.rope_scaling
608
+ self.is_causal = True
609
+
610
+ if (self.head_dim * self.num_heads) != self.hidden_size:
611
+ raise ValueError(
612
+ f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
613
+ f" and `num_heads`: {self.num_heads})."
614
+ )
615
+
616
+ op_size = self.num_heads * self.head_dim + 2 * (self.num_key_value_heads * self.head_dim)
617
+ self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
618
+ self.qkv_proj = nn.Linear(self.hidden_size, op_size, bias=False)
619
+ self._init_rope()
620
+
621
+ def _init_rope(self):
622
+ if self.rope_scaling is None:
623
+ self.rotary_emb = Phi3RotaryEmbedding(
624
+ self.head_dim,
625
+ max_position_embeddings=self.max_position_embeddings,
626
+ base=self.rope_theta,
627
+ )
628
+ else:
629
+ scaling_type = self.config.rope_scaling["type"]
630
+ if scaling_type == "su":
631
+ self.rotary_emb = Phi3SuScaledRotaryEmbedding(self.head_dim, self.config)
632
+ elif scaling_type == "yarn":
633
+ self.rotary_emb = Phi3YarnScaledRotaryEmbedding(self.head_dim, self.config)
634
+ else:
635
+ raise ValueError(f"Unknown RoPE scaling type {scaling_type}")
636
+
637
+ def forward(
638
+ self,
639
+ hidden_states: torch.Tensor,
640
+ attention_mask: Optional[torch.Tensor] = None,
641
+ position_ids: Optional[torch.LongTensor] = None,
642
+ past_key_value: Optional[Cache] = None,
643
+ output_attentions: bool = False,
644
+ use_cache: bool = False,
645
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
646
+ logger.warning_once("You are not running the flash-attention implementation, expect numerical differences.")
647
+
648
+ bsz, q_len, _ = hidden_states.size()
649
+
650
+ qkv = self.qkv_proj(hidden_states)
651
+ query_pos = self.num_heads * self.head_dim
652
+ query_states = qkv[..., :query_pos]
653
+ key_states = qkv[..., query_pos : query_pos + self.num_key_value_heads * self.head_dim]
654
+ value_states = qkv[..., query_pos + self.num_key_value_heads * self.head_dim :]
655
+
656
+ query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
657
+ key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
658
+ value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
659
+
660
+ kv_seq_len = key_states.shape[-2]
661
+ if past_key_value is not None:
662
+ if self.layer_idx is None:
663
+ raise ValueError(
664
+ f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} "
665
+ "for auto-regressive decoding with k/v caching, please make sure to initialize the attention class "
666
+ "with a layer index."
667
+ )
668
+ kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
669
+ cos, sin = self.rotary_emb(value_states, position_ids, seq_len=kv_seq_len)
670
+
671
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
672
+
673
+ if past_key_value is not None:
674
+ cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
675
+ key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
676
+
677
+ # repeat k/v heads if n_kv_heads < n_heads
678
+ key_states = repeat_kv(key_states, self.num_key_value_groups)
679
+ value_states = repeat_kv(value_states, self.num_key_value_groups)
680
+
681
+ attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
682
+
683
+ if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
684
+ raise ValueError(
685
+ f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
686
+ f" {attn_weights.size()}"
687
+ )
688
+
689
+ if attention_mask is not None:
690
+ if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
691
+ raise ValueError(
692
+ f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
693
+ )
694
+ attn_weights = attn_weights + attention_mask
695
+
696
+ # upcast attention to fp32
697
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(value_states.dtype)
698
+ attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training)
699
+
700
+ attn_output = torch.matmul(attn_weights, value_states)
701
+
702
+ if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
703
+ raise ValueError(
704
+ f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
705
+ f" {attn_output.size()}"
706
+ )
707
+
708
+ attn_output = attn_output.transpose(1, 2).contiguous()
709
+ attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
710
+
711
+ attn_output = self.o_proj(attn_output)
712
+
713
+ if not output_attentions:
714
+ attn_weights = None
715
+
716
+ return attn_output, attn_weights, past_key_value
717
+
718
+
719
+ class Phi3FlashAttention2(Phi3Attention):
720
+ """
721
+ Phi-3 flash attention module. This module inherits from `Phi3Attention` as the weights of the module stays
722
+ untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
723
+ flash attention and deal with padding tokens in case the input contains any of them.
724
+ """
725
+
726
+ # Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2.__init__
727
+ def __init__(self, *args, **kwargs):
728
+ super().__init__(*args, **kwargs)
729
+
730
+ # TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
731
+ # flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
732
+ # Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
733
+ self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
734
+
735
+ def forward(
736
+ self,
737
+ hidden_states: torch.Tensor,
738
+ attention_mask: Optional[torch.LongTensor] = None,
739
+ position_ids: Optional[torch.LongTensor] = None,
740
+ past_key_value: Optional[Cache] = None,
741
+ output_attentions: bool = False,
742
+ use_cache: bool = False,
743
+ **kwargs,
744
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
745
+ # Phi3FlashAttention2 attention does not support output_attentions
746
+
747
+ if not _flash_supports_window_size:
748
+ logger.warning_once(
749
+ "The current flash attention version does not support sliding window attention. Please use `attn_implementation='eager'` or upgrade flash-attn library."
750
+ )
751
+ raise ValueError("The current flash attention version does not support sliding window attention.")
752
+
753
+ output_attentions = False
754
+
755
+ if "padding_mask" in kwargs:
756
+ warnings.warn(
757
+ "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
758
+ )
759
+
760
+ # overwrite attention_mask with padding_mask
761
+ attention_mask = kwargs.pop("padding_mask")
762
+
763
+ bsz, q_len, _ = hidden_states.size()
764
+
765
+ qkv = self.qkv_proj(hidden_states)
766
+ query_pos = self.num_heads * self.head_dim
767
+ query_states = qkv[..., :query_pos]
768
+ key_states = qkv[..., query_pos : query_pos + self.num_key_value_heads * self.head_dim]
769
+ value_states = qkv[..., query_pos + self.num_key_value_heads * self.head_dim :]
770
+
771
+ # Flash attention requires the input to have the shape
772
+ # batch_size x seq_length x head_dim x hidden_dim
773
+ # therefore we just need to keep the original shape
774
+ query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
775
+ key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
776
+ value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
777
+
778
+ kv_seq_len = key_states.shape[-2]
779
+ if past_key_value is not None:
780
+ if self.layer_idx is None:
781
+ raise ValueError(
782
+ f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} "
783
+ "for auto-regressive decoding with k/v caching, please make sure to initialize the attention class "
784
+ "with a layer index."
785
+ )
786
+ kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
787
+
788
+ # Because the input can be padded, the absolute sequence length depends on the max position id.
789
+ rotary_seq_len = max(kv_seq_len, position_ids[:, -1].max().item()) + 1
790
+ cos, sin = self.rotary_emb(value_states, position_ids, seq_len=rotary_seq_len)
791
+
792
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
793
+
794
+ use_sliding_windows = (
795
+ _flash_supports_window_size
796
+ and getattr(self.config, "sliding_window", None) is not None
797
+ and kv_seq_len > self.config.sliding_window
798
+ )
799
+
800
+ if past_key_value is not None:
801
+ # Activate slicing cache only if the config has a value `sliding_windows` attribute
802
+ cache_has_contents = past_key_value.get_seq_length(self.layer_idx) > 0
803
+ if (
804
+ getattr(self.config, "sliding_window", None) is not None
805
+ and kv_seq_len > self.config.sliding_window
806
+ and cache_has_contents
807
+ ):
808
+ slicing_tokens = 1 - self.config.sliding_window
809
+
810
+ past_key = past_key_value[self.layer_idx][0]
811
+ past_value = past_key_value[self.layer_idx][1]
812
+
813
+ past_key = past_key[:, :, slicing_tokens:, :].contiguous()
814
+ past_value = past_value[:, :, slicing_tokens:, :].contiguous()
815
+
816
+ if past_key.shape[-2] != self.config.sliding_window - 1:
817
+ raise ValueError(
818
+ f"past key must have a shape of (`batch_size, num_heads, self.config.sliding_window-1, head_dim`), got"
819
+ f" {past_key.shape}"
820
+ )
821
+
822
+ if attention_mask is not None:
823
+ attention_mask = attention_mask[:, slicing_tokens:]
824
+ attention_mask = torch.cat([attention_mask, torch.ones_like(attention_mask[:, -1:])], dim=-1)
825
+
826
+ cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
827
+ key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
828
+
829
+ # repeat k/v heads if n_kv_heads < n_heads
830
+ key_states = repeat_kv(key_states, self.num_key_value_groups)
831
+ value_states = repeat_kv(value_states, self.num_key_value_groups)
832
+
833
+ attn_dropout = self.attention_dropout if self.training else 0.0
834
+
835
+ # In PEFT, usually we cast the layer norms in float32 for training stability reasons
836
+ # therefore the input hidden states gets silently casted in float32. Hence, we need
837
+ # cast them back in the correct dtype just to be sure everything works as expected.
838
+ # This might slowdown training & inference so it is recommended to not cast the LayerNorms
839
+ # in fp32.
840
+
841
+ if query_states.dtype == torch.float32:
842
+ if torch.is_autocast_enabled():
843
+ target_dtype = torch.get_autocast_gpu_dtype()
844
+ # Handle the case where the model is quantized
845
+ elif hasattr(self.config, "_pre_quantization_dtype"):
846
+ target_dtype = self.config._pre_quantization_dtype
847
+ else:
848
+ target_dtype = self.qkv_proj.weight.dtype
849
+
850
+ logger.warning_once(
851
+ f"The input hidden states seems to be silently casted in float32, this might be related to"
852
+ f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
853
+ f" {target_dtype}."
854
+ )
855
+
856
+ query_states = query_states.to(target_dtype)
857
+ key_states = key_states.to(target_dtype)
858
+ value_states = value_states.to(target_dtype)
859
+
860
+ # Reashape to the expected shape for Flash Attention
861
+ query_states = query_states.transpose(1, 2)
862
+ key_states = key_states.transpose(1, 2)
863
+ value_states = value_states.transpose(1, 2)
864
+
865
+ attn_output = self._flash_attention_forward(
866
+ query_states,
867
+ key_states,
868
+ value_states,
869
+ attention_mask,
870
+ q_len,
871
+ dropout=attn_dropout,
872
+ use_sliding_windows=use_sliding_windows,
873
+ )
874
+
875
+ attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous()
876
+ attn_output = self.o_proj(attn_output)
877
+
878
+ if not output_attentions:
879
+ attn_weights = None
880
+
881
+ return attn_output, attn_weights, past_key_value
882
+
883
+ # Copied from transformers.models.mistral.modeling_mistral.MistralFlashAttention2._flash_attention_forward
884
+ def _flash_attention_forward(
885
+ self,
886
+ query_states,
887
+ key_states,
888
+ value_states,
889
+ attention_mask,
890
+ query_length,
891
+ dropout=0.0,
892
+ softmax_scale=None,
893
+ use_sliding_windows=False,
894
+ ):
895
+ """
896
+ Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
897
+ first unpad the input, then computes the attention scores and pad the final attention scores.
898
+
899
+ Args:
900
+ query_states (`torch.Tensor`):
901
+ Input query states to be passed to Flash Attention API
902
+ key_states (`torch.Tensor`):
903
+ Input key states to be passed to Flash Attention API
904
+ value_states (`torch.Tensor`):
905
+ Input value states to be passed to Flash Attention API
906
+ attention_mask (`torch.Tensor`):
907
+ The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
908
+ position of padding tokens and 1 for the position of non-padding tokens.
909
+ dropout (`float`):
910
+ Attention dropout
911
+ softmax_scale (`float`, *optional*):
912
+ The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
913
+ use_sliding_windows (`bool`, *optional*):
914
+ Whether to activate sliding window attention.
915
+ """
916
+ if not self._flash_attn_uses_top_left_mask:
917
+ causal = self.is_causal
918
+ else:
919
+ # TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in LlamaFlashAttention2 __init__.
920
+ causal = self.is_causal and query_length != 1
921
+
922
+ # Contains at least one padding token in the sequence
923
+ if attention_mask is not None:
924
+ batch_size = query_states.shape[0]
925
+ query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input(
926
+ query_states, key_states, value_states, attention_mask, query_length
927
+ )
928
+
929
+ cu_seqlens_q, cu_seqlens_k = cu_seq_lens
930
+ max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
931
+
932
+ if not use_sliding_windows:
933
+ attn_output_unpad = flash_attn_varlen_func(
934
+ query_states,
935
+ key_states,
936
+ value_states,
937
+ cu_seqlens_q=cu_seqlens_q,
938
+ cu_seqlens_k=cu_seqlens_k,
939
+ max_seqlen_q=max_seqlen_in_batch_q,
940
+ max_seqlen_k=max_seqlen_in_batch_k,
941
+ dropout_p=dropout,
942
+ softmax_scale=softmax_scale,
943
+ causal=causal,
944
+ )
945
+ else:
946
+ attn_output_unpad = flash_attn_varlen_func(
947
+ query_states,
948
+ key_states,
949
+ value_states,
950
+ cu_seqlens_q=cu_seqlens_q,
951
+ cu_seqlens_k=cu_seqlens_k,
952
+ max_seqlen_q=max_seqlen_in_batch_q,
953
+ max_seqlen_k=max_seqlen_in_batch_k,
954
+ dropout_p=dropout,
955
+ softmax_scale=softmax_scale,
956
+ causal=causal,
957
+ window_size=(self.config.sliding_window, self.config.sliding_window),
958
+ )
959
+
960
+ attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
961
+ else:
962
+ if not use_sliding_windows:
963
+ attn_output = flash_attn_func(
964
+ query_states,
965
+ key_states,
966
+ value_states,
967
+ dropout,
968
+ softmax_scale=softmax_scale,
969
+ causal=causal,
970
+ )
971
+ else:
972
+ attn_output = flash_attn_func(
973
+ query_states,
974
+ key_states,
975
+ value_states,
976
+ dropout,
977
+ softmax_scale=softmax_scale,
978
+ causal=causal,
979
+ window_size=(self.config.sliding_window, self.config.sliding_window),
980
+ )
981
+
982
+ return attn_output
983
+
984
+ # Copied from transformers.models.mistral.modeling_mistral.MistralFlashAttention2._upad_input
985
+ def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
986
+ batch_size, kv_seq_len, num_heads, head_dim = key_layer.shape
987
+
988
+ # On the first iteration we need to properly re-create the padding mask
989
+ # by slicing it on the proper place
990
+ if kv_seq_len != attention_mask.shape[-1]:
991
+ attention_mask_num_tokens = attention_mask.shape[-1]
992
+ attention_mask = attention_mask[:, attention_mask_num_tokens - kv_seq_len :]
993
+
994
+ indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
995
+
996
+ key_layer = index_first_axis(key_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k)
997
+ value_layer = index_first_axis(value_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k)
998
+
999
+ if query_length == kv_seq_len:
1000
+ query_layer = index_first_axis(
1001
+ query_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k
1002
+ )
1003
+ cu_seqlens_q = cu_seqlens_k
1004
+ max_seqlen_in_batch_q = max_seqlen_in_batch_k
1005
+ indices_q = indices_k
1006
+ elif query_length == 1:
1007
+ max_seqlen_in_batch_q = 1
1008
+ cu_seqlens_q = torch.arange(
1009
+ batch_size + 1, dtype=torch.int32, device=query_layer.device
1010
+ ) # There is a memcpy here, that is very bad.
1011
+ indices_q = cu_seqlens_q[:-1]
1012
+ query_layer = query_layer.squeeze(1)
1013
+ else:
1014
+ # The -q_len: slice assumes left padding.
1015
+ attention_mask = attention_mask[:, -query_length:]
1016
+ query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
1017
+
1018
+ return (
1019
+ query_layer,
1020
+ key_layer,
1021
+ value_layer,
1022
+ indices_q,
1023
+ (cu_seqlens_q, cu_seqlens_k),
1024
+ (max_seqlen_in_batch_q, max_seqlen_in_batch_k),
1025
+ )
1026
+
1027
+
1028
+ # copied from transformers.models.llama.modeling_llama.LlamaSdpaAttention with Llama->Phi3
1029
+ # TODO @Arthur no longer copied from LLama after static cache
1030
+ class Phi3SdpaAttention(Phi3Attention):
1031
+ """
1032
+ Phi3 attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from
1033
+ `Phi3Attention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to
1034
+ SDPA API.
1035
+ """
1036
+
1037
+ # Adapted from Phi3Attention.forward
1038
+ def forward(
1039
+ self,
1040
+ hidden_states: torch.Tensor,
1041
+ attention_mask: Optional[torch.Tensor] = None,
1042
+ position_ids: Optional[torch.LongTensor] = None,
1043
+ past_key_value: Optional[Cache] = None,
1044
+ output_attentions: bool = False,
1045
+ use_cache: bool = False,
1046
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
1047
+ if output_attentions:
1048
+ # TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented.
1049
+ logger.warning_once(
1050
+ "Phi3Model is using Phi3SdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, "
1051
+ 'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
1052
+ )
1053
+ return super().forward(
1054
+ hidden_states=hidden_states,
1055
+ attention_mask=attention_mask,
1056
+ position_ids=position_ids,
1057
+ past_key_value=past_key_value,
1058
+ output_attentions=output_attentions,
1059
+ use_cache=use_cache,
1060
+ )
1061
+
1062
+ bsz, q_len, _ = hidden_states.size()
1063
+
1064
+ qkv = self.qkv_proj(hidden_states)
1065
+ query_pos = self.num_heads * self.head_dim
1066
+ query_states = qkv[..., :query_pos]
1067
+ key_states = qkv[..., query_pos : query_pos + self.num_key_value_heads * self.head_dim]
1068
+ value_states = qkv[..., query_pos + self.num_key_value_heads * self.head_dim :]
1069
+
1070
+ query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
1071
+ key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
1072
+ value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
1073
+
1074
+ kv_seq_len = key_states.shape[-2]
1075
+ if past_key_value is not None:
1076
+ kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
1077
+ cos, sin = self.rotary_emb(value_states, position_ids, seq_len=kv_seq_len)
1078
+
1079
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
1080
+
1081
+ if past_key_value is not None:
1082
+ cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
1083
+ key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
1084
+
1085
+ key_states = repeat_kv(key_states, self.num_key_value_groups)
1086
+ value_states = repeat_kv(value_states, self.num_key_value_groups)
1087
+
1088
+ if attention_mask is not None:
1089
+ if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
1090
+ raise ValueError(
1091
+ f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
1092
+ )
1093
+
1094
+ # SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask,
1095
+ # Reference: https://github.com/pytorch/pytorch/issues/112577.
1096
+ if query_states.device.type == "cuda" and attention_mask is not None:
1097
+ query_states = query_states.contiguous()
1098
+ key_states = key_states.contiguous()
1099
+ value_states = value_states.contiguous()
1100
+
1101
+ attn_output = torch.nn.functional.scaled_dot_product_attention(
1102
+ query_states,
1103
+ key_states,
1104
+ value_states,
1105
+ attn_mask=attention_mask,
1106
+ dropout_p=self.attention_dropout if self.training else 0.0,
1107
+ # The q_len > 1 is necessary to match with AttentionMaskConverter.to_causal_4d that does not create a causal mask in case q_len == 1.
1108
+ is_causal=self.is_causal and attention_mask is None and q_len > 1,
1109
+ )
1110
+
1111
+ attn_output = attn_output.transpose(1, 2).contiguous()
1112
+ attn_output = attn_output.view(bsz, q_len, self.hidden_size)
1113
+
1114
+ attn_output = self.o_proj(attn_output)
1115
+
1116
+ return attn_output, None, past_key_value
1117
+
1118
+
1119
+ PHI3_ATTENTION_CLASSES = {
1120
+ "eager": Phi3Attention,
1121
+ "flash_attention_2": Phi3FlashAttention2,
1122
+ "sdpa": Phi3SdpaAttention,
1123
+ }
1124
+
1125
+
1126
+ class Phi3DecoderLayer(nn.Module):
1127
+ def __init__(self, config: Phi3VConfig, layer_idx: int):
1128
+ super().__init__()
1129
+
1130
+ self.config = config
1131
+ self.self_attn = PHI3_ATTENTION_CLASSES[config._attn_implementation](config, layer_idx=layer_idx)
1132
+
1133
+ self.mlp = Phi3MLP(config)
1134
+ self.input_layernorm = Phi3RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
1135
+
1136
+ self.resid_attn_dropout = nn.Dropout(config.resid_pdrop)
1137
+ self.resid_mlp_dropout = nn.Dropout(config.resid_pdrop)
1138
+ self.post_attention_layernorm = Phi3RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
1139
+
1140
+ def forward(
1141
+ self,
1142
+ hidden_states: torch.Tensor,
1143
+ attention_mask: Optional[torch.Tensor] = None,
1144
+ position_ids: Optional[torch.LongTensor] = None,
1145
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
1146
+ output_attentions: Optional[bool] = False,
1147
+ use_cache: Optional[bool] = False,
1148
+ **kwargs,
1149
+ ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
1150
+ if "padding_mask" in kwargs:
1151
+ warnings.warn(
1152
+ "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
1153
+ )
1154
+ """
1155
+ Args:
1156
+ hidden_states (`torch.FloatTensor`):
1157
+ input to the layer of shape `(batch, seq_len, embed_dim)`
1158
+ attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
1159
+ `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
1160
+ position_ids (`torch.LongTensor` of shape `({0})`, *optional*):
1161
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range
1162
+ `[0, config.n_positions - 1]`. [What are position IDs?](../glossary#position-ids)
1163
+ output_attentions (`bool`, *optional*):
1164
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
1165
+ returned tensors for more detail.
1166
+ use_cache (`bool`, *optional*):
1167
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
1168
+ (see `past_key_values`).
1169
+ past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
1170
+ """
1171
+
1172
+ residual = hidden_states
1173
+
1174
+ hidden_states = self.input_layernorm(hidden_states)
1175
+
1176
+ # Self Attention
1177
+ attn_outputs, self_attn_weights, present_key_value = self.self_attn(
1178
+ hidden_states=hidden_states,
1179
+ attention_mask=attention_mask,
1180
+ position_ids=position_ids,
1181
+ past_key_value=past_key_value,
1182
+ output_attentions=output_attentions,
1183
+ use_cache=use_cache,
1184
+ )
1185
+
1186
+ hidden_states = residual + self.resid_attn_dropout(attn_outputs)
1187
+
1188
+ residual = hidden_states
1189
+ hidden_states = self.post_attention_layernorm(hidden_states)
1190
+ hidden_states = self.mlp(hidden_states)
1191
+ hidden_states = residual + self.resid_mlp_dropout(hidden_states)
1192
+
1193
+ outputs = (hidden_states,)
1194
+
1195
+ if output_attentions:
1196
+ outputs += (self_attn_weights,)
1197
+
1198
+ if use_cache:
1199
+ outputs += (present_key_value,)
1200
+
1201
+ return outputs
1202
+
1203
+
1204
+ PHI3V_START_DOCSTRING = r"""
1205
+ This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
1206
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
1207
+ etc.)
1208
+
1209
+ This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
1210
+ Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
1211
+ and behavior.
1212
+
1213
+ Parameters:
1214
+ config ([`Phi3VConfig`]):
1215
+ Model configuration class with all the parameters of the model. Initializing with a config file does not
1216
+ load the weights associated with the model, only the configuration. Check out the
1217
+ [`~PreTrainedModel.from_pretrained`] method to load the model weights.
1218
+ """
1219
+
1220
+
1221
+ @add_start_docstrings(
1222
+ "The bare Phi-3-V model outputting raw hidden-states without any specific head on top.",
1223
+ PHI3V_START_DOCSTRING,
1224
+ )
1225
+ class Phi3VPreTrainedModel(PreTrainedModel):
1226
+ config_class = Phi3VConfig
1227
+ base_model_prefix = "model"
1228
+ supports_gradient_checkpointing = True
1229
+ _no_split_modules = ["Phi3DecoderLayer"]
1230
+ _skip_keys_device_placement = "past_key_values"
1231
+ _supports_flash_attn_2 = True
1232
+ _supports_sdpa = False
1233
+ _supports_cache_class = True
1234
+
1235
+ _version = "0.0.5"
1236
+
1237
+ def _init_weights(self, module):
1238
+ std = self.config.initializer_range
1239
+ if isinstance(module, nn.Linear):
1240
+ module.weight.data.normal_(mean=0.0, std=std)
1241
+ if module.bias is not None:
1242
+ module.bias.data.zero_()
1243
+ elif isinstance(module, nn.Embedding):
1244
+ module.weight.data.normal_(mean=0.0, std=std)
1245
+ if module.padding_idx is not None:
1246
+ module.weight.data[module.padding_idx].zero_()
1247
+
1248
+
1249
+ PHI3V_INPUTS_DOCSTRING = r"""
1250
+ Args:
1251
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
1252
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
1253
+ it.
1254
+
1255
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
1256
+ [`PreTrainedTokenizer.__call__`] for details.
1257
+
1258
+ [What are input IDs?](../glossary#input-ids)
1259
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
1260
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
1261
+
1262
+ - 1 for tokens that are **not masked**,
1263
+ - 0 for tokens that are **masked**.
1264
+
1265
+ [What are attention masks?](../glossary#attention-mask)
1266
+
1267
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
1268
+ [`PreTrainedTokenizer.__call__`] for details.
1269
+
1270
+ If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
1271
+ `past_key_values`).
1272
+
1273
+ If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
1274
+ and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
1275
+ information on the default strategy.
1276
+
1277
+ - 1 indicates the head is **not masked**,
1278
+ - 0 indicates the head is **masked**.
1279
+ position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
1280
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
1281
+ config.n_positions - 1]`.
1282
+
1283
+ [What are position IDs?](../glossary#position-ids)
1284
+ past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
1285
+ Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
1286
+ blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
1287
+ returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
1288
+
1289
+ Two formats are allowed:
1290
+ - a [`~cache_utils.Cache`] instance;
1291
+ - Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
1292
+ shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy
1293
+ cache format.
1294
+
1295
+ The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the
1296
+ legacy cache format will be returned.
1297
+
1298
+ If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
1299
+ have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
1300
+ of shape `(batch_size, sequence_length)`.
1301
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
1302
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
1303
+ is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
1304
+ model's internal embedding lookup matrix.
1305
+ pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, image_size, image_size)):
1306
+ The tensors corresponding to the input images. Pixel values can be obtained using [`AutoImageProcessor`].
1307
+ See [`Phi3ImageProcessor.__call__`] for details.
1308
+ image_sizes (`torch.LongTensor` of shape `(batch_size, 2)`, *optional*):
1309
+ The sizes of the images in the batch, being (height, width) for each image.
1310
+ use_cache (`bool`, *optional*):
1311
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
1312
+ `past_key_values`).
1313
+ output_attentions (`bool`, *optional*):
1314
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
1315
+ tensors for more detail.
1316
+ output_hidden_states (`bool`, *optional*):
1317
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
1318
+ more detail.
1319
+ return_dict (`bool`, *optional*):
1320
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
1321
+ """
1322
+
1323
+
1324
+ @add_start_docstrings(
1325
+ "The bare Phi-3-V model outputting raw hidden-states without any specific head on top.",
1326
+ PHI3V_START_DOCSTRING,
1327
+ )
1328
+ class Phi3VModel(Phi3VPreTrainedModel):
1329
+ """
1330
+ Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`Phi3DecoderLayer`]
1331
+
1332
+ Args:
1333
+ config: Phi3Config
1334
+ """
1335
+
1336
+ def __init__(self, config: Phi3VConfig):
1337
+ super().__init__(config)
1338
+ self.padding_idx = config.pad_token_id
1339
+ self.vocab_size = config.vocab_size
1340
+
1341
+ self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
1342
+ self.embed_dropout = nn.Dropout(config.embd_pdrop)
1343
+
1344
+ self.vision_embed_tokens = None
1345
+ if isinstance(config.embd_layer, dict):
1346
+ # vision embedding layer
1347
+ embedding_config = {
1348
+ 'embedding_cls': config.embd_layer['embedding_cls'],
1349
+ **config.embd_layer
1350
+ }
1351
+ self.vision_embed_tokens = Phi3ImageEmbedding(config, wte=self.embed_tokens, **embedding_config)
1352
+ # # set wte the same for vision embedding
1353
+ # self.vision_embed_tokens.wte.weight = self.embed_tokens.weight
1354
+
1355
+ self.layers = nn.ModuleList(
1356
+ [Phi3DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
1357
+ )
1358
+ self._attn_implementation = config._attn_implementation
1359
+ self.norm = Phi3RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
1360
+
1361
+ self.gradient_checkpointing = False
1362
+ # Initialize weights and apply final processing
1363
+ self.post_init()
1364
+
1365
+ def get_input_embeddings(self):
1366
+ return self.embed_tokens
1367
+
1368
+ def set_input_embeddings(self, value):
1369
+ self.embed_tokens = value
1370
+
1371
+ @add_start_docstrings_to_model_forward(PHI3V_INPUTS_DOCSTRING)
1372
+ def forward(
1373
+ self,
1374
+ input_ids: torch.LongTensor = None,
1375
+ attention_mask: Optional[torch.Tensor] = None,
1376
+ position_ids: Optional[torch.LongTensor] = None,
1377
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1378
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1379
+ pixel_values: Optional[torch.FloatTensor] = None,
1380
+ image_sizes: Optional[torch.LongTensor] = None,
1381
+ use_cache: Optional[bool] = None,
1382
+ output_attentions: Optional[bool] = None,
1383
+ output_hidden_states: Optional[bool] = None,
1384
+ return_dict: Optional[bool] = None,
1385
+ ) -> Union[Tuple, BaseModelOutputWithPast]:
1386
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
1387
+ output_hidden_states = (
1388
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
1389
+ )
1390
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
1391
+
1392
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1393
+
1394
+ # retrieve input_ids and inputs_embeds
1395
+ if input_ids is not None and inputs_embeds is not None:
1396
+ raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
1397
+ elif input_ids is not None:
1398
+ batch_size, seq_length = input_ids.shape[:2]
1399
+ elif inputs_embeds is not None:
1400
+ batch_size, seq_length = inputs_embeds.shape[:2]
1401
+ else:
1402
+ raise ValueError("You have to specify either input_ids or inputs_embeds")
1403
+
1404
+ past_key_values_length = 0
1405
+
1406
+ if self.gradient_checkpointing and self.training:
1407
+ if use_cache:
1408
+ logger.warning_once(
1409
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
1410
+ )
1411
+ use_cache = False
1412
+
1413
+ if use_cache:
1414
+ use_legacy_cache = not isinstance(past_key_values, Cache)
1415
+ if use_legacy_cache:
1416
+ past_key_values = DynamicCache.from_legacy_cache(past_key_values)
1417
+ past_key_values_length = past_key_values.get_usable_length(seq_length)
1418
+
1419
+ if position_ids is None:
1420
+ device = input_ids.device if input_ids is not None else inputs_embeds.device
1421
+ position_ids = torch.arange(
1422
+ past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
1423
+ )
1424
+ position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
1425
+ else:
1426
+ position_ids = position_ids.view(-1, seq_length).long()
1427
+
1428
+ if inputs_embeds is None:
1429
+ if pixel_values is not None and image_sizes is not None:
1430
+ assert self.vision_embed_tokens is not None, "Vision embedding layer is not defined"
1431
+ inputs_embeds = self.vision_embed_tokens(input_ids, pixel_values=pixel_values, image_sizes=image_sizes)
1432
+ else:
1433
+ inputs_embeds = self.embed_tokens(input_ids)
1434
+
1435
+ if attention_mask is not None and self._attn_implementation == "flash_attention_2" and use_cache:
1436
+ is_padding_right = attention_mask[:, -1].sum().item() != batch_size
1437
+ if is_padding_right:
1438
+ raise ValueError(
1439
+ "You are attempting to perform batched generation with padding_side='right'"
1440
+ " this may lead to unexpected behaviour for Flash Attention version of Phi3. Make sure to "
1441
+ " call `tokenizer.padding_side = 'left'` before tokenizing the input. "
1442
+ )
1443
+
1444
+ if self._attn_implementation == "flash_attention_2":
1445
+ # 2d mask is passed through the layers
1446
+ attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None
1447
+ else:
1448
+ # 4d mask is passed through the layers
1449
+ attention_mask = _prepare_4d_causal_attention_mask(
1450
+ attention_mask,
1451
+ (batch_size, seq_length),
1452
+ inputs_embeds,
1453
+ past_key_values_length,
1454
+ sliding_window=self.config.sliding_window,
1455
+ )
1456
+
1457
+ hidden_states = inputs_embeds
1458
+
1459
+ # decoder layers
1460
+ all_hidden_states = () if output_hidden_states else None
1461
+ all_self_attns = () if output_attentions else None
1462
+ next_decoder_cache = None
1463
+
1464
+ for decoder_layer in self.layers:
1465
+ if output_hidden_states:
1466
+ all_hidden_states += (hidden_states,)
1467
+
1468
+ if self.gradient_checkpointing and self.training:
1469
+ layer_outputs = self._gradient_checkpointing_func(
1470
+ decoder_layer.__call__,
1471
+ hidden_states,
1472
+ attention_mask,
1473
+ position_ids,
1474
+ past_key_values,
1475
+ output_attentions,
1476
+ use_cache,
1477
+ )
1478
+ else:
1479
+ layer_outputs = decoder_layer(
1480
+ hidden_states,
1481
+ attention_mask=attention_mask,
1482
+ position_ids=position_ids,
1483
+ past_key_value=past_key_values,
1484
+ output_attentions=output_attentions,
1485
+ use_cache=use_cache,
1486
+ )
1487
+
1488
+ hidden_states = layer_outputs[0]
1489
+
1490
+ if use_cache:
1491
+ next_decoder_cache = layer_outputs[2 if output_attentions else 1]
1492
+
1493
+ if output_attentions:
1494
+ all_self_attns += (layer_outputs[1],)
1495
+
1496
+ hidden_states = self.norm(hidden_states)
1497
+
1498
+ # add hidden states from the last decoder layer
1499
+ if output_hidden_states:
1500
+ all_hidden_states += (hidden_states,)
1501
+
1502
+ next_cache = None
1503
+ if use_cache:
1504
+ next_cache = next_decoder_cache.to_legacy_cache() if use_legacy_cache else next_decoder_cache
1505
+ if not return_dict:
1506
+ return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
1507
+ return BaseModelOutputWithPast(
1508
+ last_hidden_state=hidden_states,
1509
+ past_key_values=next_cache,
1510
+ hidden_states=all_hidden_states,
1511
+ attentions=all_self_attns,
1512
+ )
1513
+
1514
+
1515
+ class Phi3VForCausalLM(Phi3VPreTrainedModel):
1516
+ _tied_weights_keys = ["lm_head.weight"]
1517
+
1518
+ # Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.__init__ with Llama->Phi3
1519
+ def __init__(self, config):
1520
+ super().__init__(config)
1521
+ self.model = Phi3VModel(config)
1522
+ self.vocab_size = config.vocab_size
1523
+ self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
1524
+
1525
+ # Initialize weights and apply final processing
1526
+ self.post_init()
1527
+
1528
+ # Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.get_input_embeddings
1529
+ def get_input_embeddings(self):
1530
+ return self.model.embed_tokens
1531
+
1532
+ # Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.set_input_embeddings
1533
+ def set_input_embeddings(self, value):
1534
+ self.model.embed_tokens = value
1535
+
1536
+ # Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.get_output_embeddings
1537
+ def get_output_embeddings(self):
1538
+ return self.lm_head
1539
+
1540
+ # Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.set_output_embeddings
1541
+ def set_output_embeddings(self, new_embeddings):
1542
+ self.lm_head = new_embeddings
1543
+
1544
+ # Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.set_decoder
1545
+ def set_decoder(self, decoder):
1546
+ self.model = decoder
1547
+
1548
+ # Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.get_decoder
1549
+ def get_decoder(self):
1550
+ return self.model
1551
+
1552
+ # Ignore copy
1553
+ @add_start_docstrings_to_model_forward(PHI3V_INPUTS_DOCSTRING)
1554
+ @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
1555
+ def forward(
1556
+ self,
1557
+ input_ids: torch.LongTensor = None,
1558
+ attention_mask: Optional[torch.Tensor] = None,
1559
+ position_ids: Optional[torch.LongTensor] = None,
1560
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1561
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1562
+ pixel_values: Optional[torch.FloatTensor] = None,
1563
+ image_sizes: Optional[torch.LongTensor] = None,
1564
+ labels: Optional[torch.LongTensor] = None,
1565
+ use_cache: Optional[bool] = None,
1566
+ output_attentions: Optional[bool] = None,
1567
+ output_hidden_states: Optional[bool] = None,
1568
+ return_dict: Optional[bool] = None,
1569
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
1570
+ r"""
1571
+ Args:
1572
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
1573
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
1574
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
1575
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
1576
+
1577
+ Returns:
1578
+
1579
+ Example:
1580
+
1581
+ ```python
1582
+ >>> from transformers import AutoTokenizer, Phi3ForCausalLM
1583
+
1584
+ >>> model = Phi3ForCausalLM.from_pretrained("microsoft/phi-3-mini-4k-instruct")
1585
+ >>> tokenizer = AutoTokenizer.from_pretrained("microsoft/phi-3-mini-4k-instruct")
1586
+
1587
+ >>> prompt = "This is an example script ."
1588
+ >>> inputs = tokenizer(prompt, return_tensors="pt")
1589
+
1590
+ >>> # Generate
1591
+ >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
1592
+ >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
1593
+ 'This is an example script .\n Certainly! Below is a sample script that demonstrates a simple task, such as calculating the sum'
1594
+ ```"""
1595
+
1596
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
1597
+ output_hidden_states = (
1598
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
1599
+ )
1600
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1601
+
1602
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
1603
+ outputs = self.model(
1604
+ input_ids=input_ids,
1605
+ attention_mask=attention_mask,
1606
+ position_ids=position_ids,
1607
+ past_key_values=past_key_values,
1608
+ inputs_embeds=inputs_embeds,
1609
+ pixel_values=pixel_values,
1610
+ image_sizes=image_sizes,
1611
+ use_cache=use_cache,
1612
+ output_attentions=output_attentions,
1613
+ output_hidden_states=output_hidden_states,
1614
+ return_dict=return_dict,
1615
+ )
1616
+
1617
+ hidden_states = outputs[0]
1618
+ logits = self.lm_head(hidden_states)
1619
+ logits = logits.float()
1620
+
1621
+ loss = None
1622
+ if labels is not None:
1623
+ # Shift so that tokens < n predict n
1624
+ shift_logits = logits[..., :-1, :].contiguous()
1625
+ shift_labels = labels[..., 1:].contiguous()
1626
+ # Flatten the tokens
1627
+ loss_fct = CrossEntropyLoss()
1628
+ shift_logits = shift_logits.view(-1, self.config.vocab_size)
1629
+ shift_labels = shift_labels.view(-1)
1630
+ # Enable model parallelism
1631
+ shift_labels = shift_labels.to(shift_logits.device)
1632
+ loss = loss_fct(shift_logits, shift_labels)
1633
+
1634
+ if not return_dict:
1635
+ output = (logits,) + outputs[1:]
1636
+ return (loss,) + output if loss is not None else output
1637
+
1638
+ return CausalLMOutputWithPast(
1639
+ loss=loss,
1640
+ logits=logits,
1641
+ past_key_values=outputs.past_key_values,
1642
+ hidden_states=outputs.hidden_states,
1643
+ attentions=outputs.attentions,
1644
+ )
1645
+
1646
+ # Copied from transformers.models.persimmon.modeling_persimmon.PersimmonForCausalLM.prepare_inputs_for_generation
1647
+ def prepare_inputs_for_generation(
1648
+ self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, pixel_values=None, image_sizes=None, **kwargs
1649
+ ):
1650
+ if past_key_values is not None:
1651
+ if isinstance(past_key_values, Cache):
1652
+ cache_length = past_key_values.get_seq_length()
1653
+ past_length = past_key_values.seen_tokens
1654
+ max_cache_length = past_key_values.get_max_length()
1655
+ else:
1656
+ cache_length = past_length = past_key_values[0][0].shape[2]
1657
+ max_cache_length = None
1658
+
1659
+ # Keep only the unprocessed tokens:
1660
+ # 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
1661
+ # some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as
1662
+ # input)
1663
+ if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]:
1664
+ input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
1665
+ # 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
1666
+ # input_ids based on the past_length.
1667
+ elif past_length < input_ids.shape[1]:
1668
+ input_ids = input_ids[:, past_length:]
1669
+ # 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.
1670
+
1671
+ # If we are about to go beyond the maximum cache length, we need to crop the input attention mask.
1672
+ if (
1673
+ max_cache_length is not None
1674
+ and attention_mask is not None
1675
+ and cache_length + input_ids.shape[1] > max_cache_length
1676
+ ):
1677
+ attention_mask = attention_mask[:, -max_cache_length:]
1678
+
1679
+ position_ids = kwargs.get("position_ids", None)
1680
+ if attention_mask is not None and position_ids is None:
1681
+ # create position_ids on the fly for batch generation
1682
+ position_ids = attention_mask.long().cumsum(-1) - 1
1683
+ position_ids.masked_fill_(attention_mask == 0, 1)
1684
+ if past_key_values:
1685
+ position_ids = position_ids[:, -input_ids.shape[1] :]
1686
+
1687
+ # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
1688
+ if inputs_embeds is not None and past_key_values is None:
1689
+ model_inputs = {"inputs_embeds": inputs_embeds}
1690
+ else:
1691
+ model_inputs = {"input_ids": input_ids}
1692
+
1693
+ model_inputs.update(
1694
+ {
1695
+ "position_ids": position_ids,
1696
+ "past_key_values": past_key_values,
1697
+ "use_cache": kwargs.get("use_cache"),
1698
+ "attention_mask": attention_mask,
1699
+ "pixel_values": pixel_values,
1700
+ "image_sizes": image_sizes,
1701
+ }
1702
+ )
1703
+ return model_inputs
1704
+
1705
+ @staticmethod
1706
+ # Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM._reorder_cache
1707
+ def _reorder_cache(past_key_values, beam_idx):
1708
+ reordered_past = ()
1709
+ for layer_past in past_key_values:
1710
+ reordered_past += (
1711
+ tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
1712
+ )
1713
+ return reordered_past
1714
+
1715
+
1716
+ @add_start_docstrings(
1717
+ """
1718
+ The [`Phi3VModel`] with a sequence classification head on top (linear layer).
1719
+
1720
+ [`Phi3VForSequenceClassification`] uses the last token in order to do the classification, as other causal models
1721
+ (e.g. GPT-2) do.
1722
+
1723
+ Since it does classification on the last token, it requires to know the position of the last token. If a
1724
+ `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
1725
+ no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
1726
+ padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
1727
+ each row of the batch).
1728
+ """,
1729
+ PHI3V_START_DOCSTRING,
1730
+ )
1731
+ # Copied from transformers.models.llama.modeling_llama.LlamaForSequenceClassification with Llama->Phi3, LLAMA->PHI3, self.transformer->self.model, transformer_outputs->model_outputs
1732
+ class Phi3VForSequenceClassification(Phi3VPreTrainedModel):
1733
+ def __init__(self, config):
1734
+ super().__init__(config)
1735
+ self.num_labels = config.num_labels
1736
+ self.model = Phi3VModel(config)
1737
+ self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
1738
+
1739
+ # Initialize weights and apply final processing
1740
+ self.post_init()
1741
+
1742
+ def get_input_embeddings(self):
1743
+ return self.model.embed_tokens
1744
+
1745
+ def set_input_embeddings(self, value):
1746
+ self.model.embed_tokens = value
1747
+
1748
+ @add_start_docstrings_to_model_forward(PHI3V_INPUTS_DOCSTRING)
1749
+ def forward(
1750
+ self,
1751
+ input_ids: torch.LongTensor = None,
1752
+ attention_mask: Optional[torch.Tensor] = None,
1753
+ position_ids: Optional[torch.LongTensor] = None,
1754
+ past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
1755
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1756
+ pixel_values: Optional[torch.FloatTensor] = None,
1757
+ image_sizes: Optional[torch.LongTensor] = None,
1758
+ labels: Optional[torch.LongTensor] = None,
1759
+ use_cache: Optional[bool] = None,
1760
+ output_attentions: Optional[bool] = None,
1761
+ output_hidden_states: Optional[bool] = None,
1762
+ return_dict: Optional[bool] = None,
1763
+ ) -> Union[Tuple, SequenceClassifierOutputWithPast]:
1764
+ r"""
1765
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1766
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
1767
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
1768
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
1769
+ """
1770
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1771
+
1772
+ model_outputs = self.model(
1773
+ input_ids,
1774
+ attention_mask=attention_mask,
1775
+ position_ids=position_ids,
1776
+ past_key_values=past_key_values,
1777
+ inputs_embeds=inputs_embeds,
1778
+ pixel_values=pixel_values,
1779
+ image_sizes=image_sizes,
1780
+ use_cache=use_cache,
1781
+ output_attentions=output_attentions,
1782
+ output_hidden_states=output_hidden_states,
1783
+ return_dict=return_dict,
1784
+ )
1785
+ hidden_states = model_outputs[0]
1786
+ logits = self.score(hidden_states)
1787
+
1788
+ if input_ids is not None:
1789
+ batch_size = input_ids.shape[0]
1790
+ else:
1791
+ batch_size = inputs_embeds.shape[0]
1792
+
1793
+ if self.config.pad_token_id is None and batch_size != 1:
1794
+ raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
1795
+ if self.config.pad_token_id is None:
1796
+ sequence_lengths = -1
1797
+ else:
1798
+ if input_ids is not None:
1799
+ # if no pad token found, use modulo instead of reverse indexing for ONNX compatibility
1800
+ sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1
1801
+ sequence_lengths = sequence_lengths % input_ids.shape[-1]
1802
+ sequence_lengths = sequence_lengths.to(logits.device)
1803
+ else:
1804
+ sequence_lengths = -1
1805
+
1806
+ pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
1807
+
1808
+ loss = None
1809
+ if labels is not None:
1810
+ labels = labels.to(logits.device)
1811
+ if self.config.problem_type is None:
1812
+ if self.num_labels == 1:
1813
+ self.config.problem_type = "regression"
1814
+ elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
1815
+ self.config.problem_type = "single_label_classification"
1816
+ else:
1817
+ self.config.problem_type = "multi_label_classification"
1818
+
1819
+ if self.config.problem_type == "regression":
1820
+ loss_fct = MSELoss()
1821
+ if self.num_labels == 1:
1822
+ loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
1823
+ else:
1824
+ loss = loss_fct(pooled_logits, labels)
1825
+ elif self.config.problem_type == "single_label_classification":
1826
+ loss_fct = CrossEntropyLoss()
1827
+ loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
1828
+ elif self.config.problem_type == "multi_label_classification":
1829
+ loss_fct = BCEWithLogitsLoss()
1830
+ loss = loss_fct(pooled_logits, labels)
1831
+ if not return_dict:
1832
+ output = (pooled_logits,) + model_outputs[1:]
1833
+ return ((loss,) + output) if loss is not None else output
1834
+
1835
+ return SequenceClassifierOutputWithPast(
1836
+ loss=loss,
1837
+ logits=pooled_logits,
1838
+ past_key_values=model_outputs.past_key_values,
1839
+ hidden_states=model_outputs.hidden_states,
1840
+ attentions=model_outputs.attentions,
1841
+ )
1842
+
1843
+
1844
+ @add_start_docstrings(
1845
+ """
1846
+ [`Phi3VModel`] with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for
1847
+ Named-Entity-Recognition (NER) tasks.
1848
+ """,
1849
+ PHI3V_START_DOCSTRING,
1850
+ )
1851
+ # Copied from transformers.models.mpt.modeling_mpt.MptForTokenClassification with Mpt->Phi3,MPT->PHI3,self.transformer->self.model,transformer_outputs->model_outputs
1852
+ class Phi3VForTokenClassification(Phi3VPreTrainedModel):
1853
+ def __init__(self, config: Phi3VConfig):
1854
+ super().__init__(config)
1855
+ self.num_labels = config.num_labels
1856
+
1857
+ self.model = Phi3VModel(config)
1858
+ if hasattr(config, "classifier_dropout") and config.classifier_dropout is not None:
1859
+ classifier_dropout = config.classifier_dropout
1860
+ elif hasattr(config, "hidden_dropout") and config.hidden_dropout is not None:
1861
+ classifier_dropout = config.hidden_dropout
1862
+ else:
1863
+ classifier_dropout = 0.1
1864
+ self.dropout = nn.Dropout(classifier_dropout)
1865
+ self.classifier = nn.Linear(config.hidden_size, config.num_labels)
1866
+
1867
+ # Initialize weights and apply final processing
1868
+ self.post_init()
1869
+
1870
+ @add_start_docstrings_to_model_forward(PHI3V_INPUTS_DOCSTRING)
1871
+ @add_code_sample_docstrings(
1872
+ checkpoint=_CHECKPOINT_FOR_DOC,
1873
+ output_type=TokenClassifierOutput,
1874
+ config_class=_CONFIG_FOR_DOC,
1875
+ )
1876
+ def forward(
1877
+ self,
1878
+ input_ids: Optional[torch.LongTensor] = None,
1879
+ past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None,
1880
+ attention_mask: Optional[torch.Tensor] = None,
1881
+ inputs_embeds: Optional[torch.Tensor] = None,
1882
+ pixel_values: Optional[torch.FloatTensor] = None,
1883
+ image_sizes: Optional[torch.LongTensor] = None,
1884
+ labels: Optional[torch.Tensor] = None,
1885
+ use_cache: Optional[bool] = None,
1886
+ output_attentions: Optional[bool] = None,
1887
+ output_hidden_states: Optional[bool] = None,
1888
+ return_dict: Optional[bool] = None,
1889
+ **deprecated_arguments,
1890
+ ) -> Union[Tuple[torch.Tensor], TokenClassifierOutput]:
1891
+ r"""
1892
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1893
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
1894
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
1895
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
1896
+ """
1897
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1898
+
1899
+ model_outputs = self.model(
1900
+ input_ids,
1901
+ past_key_values=past_key_values,
1902
+ attention_mask=attention_mask,
1903
+ inputs_embeds=inputs_embeds,
1904
+ pixel_values=pixel_values,
1905
+ image_sizes=image_sizes,
1906
+ use_cache=use_cache,
1907
+ output_attentions=output_attentions,
1908
+ output_hidden_states=output_hidden_states,
1909
+ return_dict=return_dict,
1910
+ )
1911
+
1912
+ hidden_states = model_outputs[0]
1913
+ hidden_states = self.dropout(hidden_states)
1914
+ logits = self.classifier(hidden_states)
1915
+
1916
+ loss = None
1917
+ if labels is not None:
1918
+ # move labels to correct device to enable model parallelism
1919
+ labels = labels.to(logits.device)
1920
+ batch_size, seq_length = labels.shape
1921
+ loss_fct = CrossEntropyLoss()
1922
+ loss = loss_fct(
1923
+ logits.view(batch_size * seq_length, self.num_labels), labels.view(batch_size * seq_length)
1924
+ )
1925
+
1926
+ if not return_dict:
1927
+ output = (logits,) + model_outputs[2:]
1928
+ return ((loss,) + output) if loss is not None else output
1929
+
1930
+ return TokenClassifierOutput(
1931
+ loss=loss,
1932
+ logits=logits,
1933
+ hidden_states=model_outputs.hidden_states,
1934
+ attentions=model_outputs.attentions,
1935
+ )
preprocessor_config.json ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "auto_map": {
3
+ "AutoImageProcessor": "image_processing_phi3_v.Phi3VImageProcessor",
4
+ "AutoProcessor": "processing_phi3_v.Phi3VProcessor"
5
+ },
6
+ "do_convert_rgb": true,
7
+ "image_mean": [
8
+ 0.48145466,
9
+ 0.4578275,
10
+ 0.40821073
11
+ ],
12
+ "image_processor_type": "Phi3VImageProcessor",
13
+ "image_std": [
14
+ 0.26862954,
15
+ 0.26130258,
16
+ 0.27577711
17
+ ],
18
+ "num_crops": 4,
19
+ "num_img_tokens": 144,
20
+ "processor_class": "Phi3VProcessor"
21
+ }
processing_phi3_v.py ADDED
@@ -0,0 +1,478 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2024 Microsoft and the HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+
16
+ """
17
+ Processor class for Phi3-V.
18
+ """
19
+ import re
20
+ from typing import List, Optional, Union
21
+
22
+ import torch
23
+
24
+ import transformers
25
+ from transformers.feature_extraction_utils import BatchFeature
26
+ from transformers.image_utils import ImageInput
27
+ from transformers.processing_utils import ProcessorMixin
28
+ from transformers.tokenization_utils_base import PaddingStrategy, TextInput, TruncationStrategy
29
+ from transformers.utils import TensorType
30
+
31
+
32
+ """Image processor class for Phi3-V."""
33
+
34
+ from typing import List, Optional, Union
35
+
36
+ import numpy as np
37
+
38
+ from transformers.image_processing_utils import BaseImageProcessor, BatchFeature
39
+ from transformers.image_transforms import (
40
+ convert_to_rgb,
41
+ )
42
+ from transformers.image_utils import (
43
+ OPENAI_CLIP_MEAN,
44
+ OPENAI_CLIP_STD,
45
+ ImageInput,
46
+ make_list_of_images,
47
+ valid_images,
48
+ )
49
+ from transformers.utils import TensorType, is_vision_available, logging
50
+
51
+ from transformers import AutoImageProcessor
52
+
53
+ logger = logging.get_logger(__name__)
54
+
55
+
56
+ if is_vision_available():
57
+ from PIL import Image
58
+
59
+ import torch
60
+ import torchvision
61
+
62
+ def padding_336(b):
63
+ width, height = b.size
64
+ tar = int(np.ceil(height / 336) * 336)
65
+ top_padding = int((tar - height)/2)
66
+ bottom_padding = tar - height - top_padding
67
+ left_padding = 0
68
+ right_padding = 0
69
+ b = torchvision.transforms.functional.pad(b, [left_padding, top_padding, right_padding, bottom_padding], fill=[255,255,255])
70
+
71
+ return b
72
+
73
+ def calc_padded_size(width, height, padding_unit=336):
74
+ target_height = int(np.ceil(height / padding_unit) * padding_unit)
75
+ top_padding = int((target_height - height) / 2)
76
+ bottom_padding = target_height - height - top_padding
77
+ left_padding = 0
78
+ right_padding = 0
79
+ padded_width = width + left_padding + right_padding
80
+ padded_height = height + top_padding + bottom_padding
81
+ return padded_width, padded_height
82
+
83
+ def HD_transform(img, hd_num=16):
84
+ width, height = img.size
85
+ trans = False
86
+ if width < height:
87
+ img = img.transpose(Image.TRANSPOSE)
88
+ trans = True
89
+ width, height = img.size
90
+ ratio = (width/ height)
91
+ scale = 1
92
+ while scale*np.ceil(scale/ratio) <= hd_num:
93
+ scale += 1
94
+ scale -= 1
95
+ new_w = int(scale * 336)
96
+ new_h = int(new_w / ratio)
97
+
98
+ img = torchvision.transforms.functional.resize(img, [new_h, new_w],)
99
+ img = padding_336(img)
100
+ width, height = img.size
101
+ if trans:
102
+ img = img.transpose(Image.TRANSPOSE)
103
+
104
+ return img
105
+
106
+ def calc_hd_transform_size(width, height, hd_num=16):
107
+ transposed = False
108
+ if width < height:
109
+ width, height = height, width
110
+ transposed = True
111
+
112
+ ratio = width / height
113
+ scale = 1
114
+ while scale * np.ceil(scale / ratio) <= hd_num:
115
+ scale += 1
116
+ scale -= 1
117
+
118
+ new_width = int(scale * 336)
119
+ new_height = int(new_width / ratio)
120
+
121
+ padded_width, padded_height = calc_padded_size(new_width, new_height)
122
+
123
+ if transposed:
124
+ padded_width, padded_height = padded_height, padded_width
125
+
126
+ return padded_width, padded_height
127
+
128
+ def pad_to_max_num_crops_tensor(images, max_crops=5):
129
+ """
130
+ images: B x 3 x H x W, B<=max_crops
131
+ """
132
+ B, _, H, W = images.shape
133
+ if B < max_crops:
134
+ pad = torch.zeros(max_crops - B, 3, H, W, dtype=images.dtype, device=images.device)
135
+ images = torch.cat([images, pad], dim=0)
136
+ return images
137
+
138
+
139
+ class Phi3VImageProcessor(BaseImageProcessor):
140
+ r"""
141
+ Constructs a Phi3 image processor. Based on [`CLIPImageProcessor`] with incorporation of additional techniques
142
+ for processing high resolution images as explained in the [InternLM-XComposer2-4KHD](https://arxiv.org/pdf/2404.06512)
143
+
144
+ Args:
145
+ image_mean (`float` or `List[float]`, *optional*, defaults to `[0.48145466, 0.4578275, 0.40821073]`):
146
+ Mean to use if normalizing the image. This is a float or list of floats the length of the number of
147
+ channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method.
148
+ image_std (`float` or `List[float]`, *optional*, defaults to `[0.26862954, 0.26130258, 0.27577711]`):
149
+ Standard deviation to use if normalizing the image. This is a float or list of floats the length of the
150
+ number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method.
151
+ Can be overridden by the `image_std` parameter in the `preprocess` method.
152
+ do_convert_rgb (`bool`, *optional*, defaults to `True`):
153
+ Whether to convert the image to RGB.
154
+ """
155
+
156
+ model_input_names = ["pixel_values"]
157
+
158
+ def __init__(
159
+ self,
160
+ num_crops: int = 1,
161
+ image_mean: Optional[Union[float, List[float]]] = None,
162
+ image_std: Optional[Union[float, List[float]]] = None,
163
+ do_convert_rgb: bool = True,
164
+ **kwargs,
165
+ ) -> None:
166
+ super().__init__(**kwargs)
167
+ self.num_crops = num_crops
168
+ self.image_mean = image_mean if image_mean is not None else OPENAI_CLIP_MEAN
169
+ self.image_std = image_std if image_std is not None else OPENAI_CLIP_STD
170
+ self.do_convert_rgb = do_convert_rgb
171
+
172
+ def calc_num_image_tokens(
173
+ self,
174
+ images: ImageInput
175
+ ):
176
+ """ Calculate the number of image tokens for each image.
177
+ Args:
178
+ images (`ImageInput`):
179
+ Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If
180
+ passing in images with pixel values between 0 and 1, set `do_rescale=False`.
181
+ """
182
+ images = make_list_of_images(images)
183
+
184
+ if not valid_images(images):
185
+ raise ValueError(
186
+ "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
187
+ "torch.Tensor, tf.Tensor or jax.ndarray."
188
+ )
189
+
190
+ images = [image.convert('RGB') for image in images]
191
+ # (H, W, C)
192
+ elems = [HD_transform(im, hd_num = self.num_crops) for im in images]
193
+ shapes = [[im.size[1], im.size[0]] for im in elems]
194
+ num_img_tokens = [int((h//336*w//336+1)*144 + 1 + (h//336+1)*12) for h, w in shapes]
195
+ return num_img_tokens
196
+
197
+ def calc_num_image_tokens_from_image_size(self, width, height):
198
+ """
199
+ Calculate the number of image tokens for a given image size.
200
+ Args:
201
+ width (`int`): Width of the image.
202
+ height (`int`): Height of the image.
203
+ """
204
+ new_width, new_height = calc_hd_transform_size(width, height, hd_num=self.num_crops)
205
+ num_img_tokens = int((new_height // 336 * new_width // 336 + 1) * 144 + 1 + (new_height // 336 + 1) * 12)
206
+ return num_img_tokens
207
+
208
+ def preprocess(
209
+ self,
210
+ images: ImageInput,
211
+ image_mean: Optional[Union[float, List[float]]] = None,
212
+ image_std: Optional[Union[float, List[float]]] = None,
213
+ do_convert_rgb: bool = None,
214
+ return_tensors: Optional[Union[str, TensorType]] = None,
215
+ ):
216
+ """
217
+ Args:
218
+ images (`ImageInput`):
219
+ Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If
220
+ passing in images with pixel values between 0 and 1, set `do_rescale=False`.
221
+ image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`):
222
+ Image mean to use for normalization. Only has an effect if `do_normalize` is set to `True`.
223
+ image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`):
224
+ Image standard deviation to use for normalization. Only has an effect if `do_normalize` is set to
225
+ `True`.
226
+ do_convert_rgb (`bool`, *optional*, defaults to `self.do_convert_rgb`):
227
+ Whether to convert the image to RGB.
228
+ return_tensors (`str` or `TensorType`, *optional*):
229
+ The type of tensors to return. Can be one of:
230
+ - Unset: Return a list of `np.ndarray`.
231
+ - `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
232
+ - `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
233
+ - `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
234
+ - `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
235
+ """
236
+ image_mean = image_mean if image_mean is not None else self.image_mean
237
+ image_std = image_std if image_std is not None else self.image_std
238
+ do_convert_rgb = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb
239
+
240
+ images = make_list_of_images(images)
241
+
242
+ if not valid_images(images):
243
+ raise ValueError(
244
+ "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
245
+ "torch.Tensor, tf.Tensor or jax.ndarray."
246
+ )
247
+
248
+ if do_convert_rgb:
249
+ images = [convert_to_rgb(image) for image in images]
250
+
251
+ image_sizes = []
252
+ img_processor = torchvision.transforms.Compose([
253
+ torchvision.transforms.ToTensor(),
254
+ torchvision.transforms.Normalize(image_mean, image_std)
255
+ ])
256
+
257
+ # PIL images
258
+ # HD_transform pad images to size of multiiply of 336, 336
259
+ # convert to RGB first
260
+ images = [image.convert('RGB') for image in images]
261
+ elems = [HD_transform(im, hd_num = self.num_crops) for im in images]
262
+ # tensor transform and normalize
263
+ hd_images = [img_processor(im) for im in elems]
264
+ # create global image
265
+ global_image = [torch.nn.functional.interpolate(im.unsqueeze(0).float(), size=(336, 336), mode='bicubic',).to(im.dtype) for im in hd_images]
266
+
267
+ # [(3, h, w)], where h, w is multiple of 336
268
+ shapes = [[im.size(1), im.size(2)] for im in hd_images]
269
+ num_img_tokens = [int(((h//336)*(w//336)+1)*144 + 1 + (h//336+1)*12) for h, w in shapes]
270
+ # reshape to channel dimension -> (num_images, num_crops, 3, 336, 336)
271
+ # (1, 3, h//336, 336, w//336, 336) -> (1, h//336, w//336, 3, 336, 336) -> (h//336*w//336, 3, 336, 336)
272
+ hd_images_reshape = [im.reshape(1, 3, h//336, 336, w//336, 336).permute(0,2,4,1,3,5).reshape(-1, 3, 336, 336).contiguous() for im, (h, w) in zip(hd_images, shapes)]
273
+ # concat global image and local image
274
+ hd_images_reshape = [torch.cat([_global_image] + [_im], dim=0) for _global_image, _im in zip(global_image, hd_images_reshape)]
275
+
276
+ # pad to max_num_crops
277
+ image_transformed = [pad_to_max_num_crops_tensor(im, self.num_crops+1) for im in hd_images_reshape]
278
+ image_transformed = torch.stack(image_transformed, dim=0)
279
+ image_sizes = [torch.LongTensor(_shapes) for _shapes in shapes]
280
+ padded_images = image_transformed
281
+ image_sizes = shapes
282
+
283
+ data = {"pixel_values": padded_images,
284
+ "image_sizes": image_sizes,
285
+ "num_img_tokens": num_img_tokens
286
+ }
287
+
288
+ return BatchFeature(data=data, tensor_type=return_tensors)
289
+
290
+ AutoImageProcessor.register("Phi3VImageProcessor", Phi3VImageProcessor)
291
+
292
+ transformers.Phi3VImageProcessor = Phi3VImageProcessor
293
+
294
+ class Phi3VProcessor(ProcessorMixin):
295
+ r"""
296
+ Constructs a Phi3-V processor which wraps a Phi3-V image processor and a LLaMa tokenizer into a single processor.
297
+
298
+ [`Phi3VProcessor`] offers all the functionalities of [`Phi3VImageProcessor`] and [`LlamaTokenizerFast`]. See the
299
+ [`~Phi3VProcessor.__call__`] and [`~Phi3VProcessor.decode`] for more information.
300
+
301
+ Args:
302
+ image_processor ([`Phi3VImageProcessor`], *optional*):
303
+ The image processor is a required input.
304
+ tokenizer ([`LlamaTokenizerFast`], *optional*):
305
+ The tokenizer is a required input.
306
+ """
307
+
308
+ attributes = ["image_processor", "tokenizer"]
309
+ image_processor_class = "Phi3VImageProcessor"
310
+ tokenizer_class = ("LlamaTokenizer", "LlamaTokenizerFast")
311
+ special_image_token = "<|image|>"
312
+
313
+ def __init__(self, image_processor, tokenizer):
314
+ self.image_processor = image_processor
315
+ self.tokenizer = tokenizer
316
+ self.num_img_tokens = image_processor.num_img_tokens
317
+ self.img_tokens = [f"<|image_{i+1}|>" for i in range(1000000)]
318
+
319
+ def __call__(
320
+ self,
321
+ text: Union[TextInput, List[TextInput]],
322
+ images: ImageInput = None,
323
+ padding: Union[bool, str, PaddingStrategy] = False,
324
+ truncation: Union[bool, str, TruncationStrategy] = None,
325
+ max_length=None,
326
+ return_tensors: Optional[Union[str, TensorType]] = TensorType.PYTORCH,
327
+ ) -> BatchFeature:
328
+ """
329
+ Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the `text`
330
+ and `kwargs` arguments to LlamaTokenizerFast's [`~LlamaTokenizerFast.__call__`] if `text` is not `None` to encode
331
+ the text. To prepare the image(s), this method forwards the `images` and `kwrags` arguments to
332
+ Phi3ImageProcessor's [`~Phi3ImageProcessor.__call__`] if `images` is not `None`. Please refer to the doctsring
333
+ of the above two methods for more information.
334
+
335
+ Args:
336
+ text (`str`, `List[str]`, `List[List[str]]`):
337
+ The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
338
+ (pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
339
+ `is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
340
+ images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`):
341
+ The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
342
+ tensor. Both channels-first and channels-last formats are supported.
343
+ padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):
344
+ Select a strategy to pad the returned sequences (according to the model's padding side and padding
345
+ index) among:
346
+ - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
347
+ sequence if provided).
348
+ - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum
349
+ acceptable input length for the model if that argument is not provided.
350
+ - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different
351
+ lengths).
352
+ max_length (`int`, *optional*):
353
+ Maximum length of the returned list and optionally padding length (see above).
354
+ truncation (`bool`, *optional*):
355
+ Activates truncation to cut input sequences longer than `max_length` to `max_length`.
356
+ return_tensors (`str` or [`~utils.TensorType`], *optional*):
357
+ If set, will return tensors of a particular framework. Acceptable values are:
358
+
359
+ - `'tf'`: Return TensorFlow `tf.constant` objects.
360
+ - `'pt'`: Return PyTorch `torch.Tensor` objects.
361
+ - `'np'`: Return NumPy `np.ndarray` objects.
362
+ - `'jax'`: Return JAX `jnp.ndarray` objects.
363
+
364
+ Returns:
365
+ [`BatchFeature`]: A [`BatchFeature`] with the following fields:
366
+
367
+ - **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`.
368
+ - **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
369
+ `return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not
370
+ `None`).
371
+ - **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`.
372
+ """
373
+ if images is not None:
374
+ image_inputs = self.image_processor(images, return_tensors=return_tensors)
375
+ else:
376
+ image_inputs = {}
377
+ inputs = self._convert_images_texts_to_inputs(image_inputs, text, padding=padding, truncation=truncation, max_length=max_length, return_tensors=return_tensors)
378
+ return inputs
379
+
380
+ def calc_num_image_tokens(self, images: ImageInput):
381
+ """ Calculate the number of image tokens for each image.
382
+ Args:
383
+ images (`ImageInput`):
384
+ Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If
385
+ passing in images with pixel values between 0 and 1, set `do_rescale=False`.
386
+ """
387
+ return self.image_processor.calc_num_image_tokens(images)
388
+
389
+ def calc_num_image_tokens_from_image_size(self, width, height):
390
+ """ Calculate the number of image token for an image with given width and height.
391
+ Args:
392
+ width (`int`):
393
+ Width of the image.
394
+ height (`int`):
395
+ Height of the image.
396
+ """
397
+ return self.image_processor.calc_num_image_tokens_from_image_size(width, height)
398
+
399
+
400
+ @property
401
+ def special_image_token_id(self):
402
+ return self.tokenizer.convert_tokens_to_ids(self.special_image_token)
403
+
404
+ def get_special_image_token_id(self):
405
+ return self.tokenizer.convert_tokens_to_ids(self.special_image_token)
406
+
407
+ def _convert_images_texts_to_inputs(self, images, texts, padding=False, truncation=None, max_length=None, return_tensors=None):
408
+
409
+ if not len(images):
410
+ model_inputs = self.tokenizer(texts, return_tensors=return_tensors, padding=padding, truncation=truncation, max_length=max_length)
411
+ return BatchFeature(data={**model_inputs})
412
+
413
+ pattern = r"<\|image_\d+\|>"
414
+ prompt_chunks = [self.tokenizer(chunk).input_ids for chunk in re.split(pattern, texts)]
415
+
416
+ if 'num_img_tokens' in images:
417
+ num_img_tokens = images['num_img_tokens']
418
+ else:
419
+ assert 'num_crops' in images, 'num_crops must be provided in images if num_img_tokens is not provided'
420
+ num_crops = images['num_crops']
421
+ num_img_tokens = [_num_crops * self.num_img_tokens for _num_crops in num_crops]
422
+
423
+ images, image_sizes = images['pixel_values'], images['image_sizes']
424
+
425
+ # image_tags needs to start from 1 to n
426
+ image_tags = re.findall(pattern, texts)
427
+ # image_ids = [int(s.split("|")[1].split("_")[-1]) * -1 for s in image_tags]
428
+ # image_ids_pad = [[iid]*num_img_tokens[i] for i, iid in enumerate(image_ids)]
429
+ image_ids = [int(s.split("|")[1].split("_")[-1]) for s in image_tags]
430
+ unique_image_ids = sorted(list(set(image_ids)))
431
+ # image_ids must start from 1, and must be continuous int, e.g. [1, 2, 3], cannot be [1, 4, 5]
432
+ # check the condition
433
+ assert unique_image_ids == list(range(1, len(unique_image_ids)+1)), f"image_ids must start from 1, and must be continuous int, e.g. [1, 2, 3], cannot be {unique_image_ids}"
434
+ # total images must be the same as the number of image tags
435
+ assert len(unique_image_ids) == len(images), f"total images must be the same as the number of image tags, got {len(unique_image_ids)} image tags and {len(images)} images"
436
+
437
+ image_ids_pad = [[-iid]*num_img_tokens[iid-1] for iid in image_ids]
438
+
439
+ def insert_separator(X, sep_list):
440
+ if len(X) > len(sep_list):
441
+ sep_list.append([])
442
+ return [ele for sublist in zip(X, sep_list) for ele in sublist]
443
+ input_ids = []
444
+ offset = 0
445
+ for x in insert_separator(prompt_chunks, image_ids_pad):
446
+ input_ids.extend(x[offset:])
447
+
448
+ input_ids = torch.tensor(input_ids, dtype=torch.long).unsqueeze(0)
449
+ attention_mask = (input_ids > -1000000).to(torch.long)
450
+
451
+ return BatchFeature(data={"input_ids": input_ids,
452
+ "attention_mask": attention_mask,
453
+ "pixel_values": images,
454
+ "image_sizes": image_sizes})
455
+
456
+
457
+ # Copied from transformers.models.clip.processing_clip.CLIPProcessor.batch_decode with CLIP->Llama
458
+ def batch_decode(self, *args, **kwargs):
459
+ """
460
+ This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
461
+ refer to the docstring of this method for more information.
462
+ """
463
+ return self.tokenizer.batch_decode(*args, **kwargs)
464
+
465
+ # Copied from transformers.models.clip.processing_clip.CLIPProcessor.decode with CLIP->Llama
466
+ def decode(self, *args, **kwargs):
467
+ """
468
+ This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to
469
+ the docstring of this method for more information.
470
+ """
471
+ return self.tokenizer.decode(*args, **kwargs)
472
+
473
+ @property
474
+ # Copied from transformers.models.clip.processing_clip.CLIPProcessor.model_input_names
475
+ def model_input_names(self):
476
+ tokenizer_input_names = self.tokenizer.model_input_names
477
+ image_processor_input_names = self.image_processor.model_input_names
478
+ return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
processor_config.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "auto_map": {
3
+ "AutoProcessor": "processing_phi3_v.Phi3VProcessor"
4
+ },
5
+ "processor_class": "Phi3VProcessor"
6
+ }
sample_inference.py ADDED
@@ -0,0 +1,142 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+
3
+ from PIL import Image
4
+ import requests
5
+ import torch
6
+ from transformers import AutoModelForCausalLM
7
+ from transformers import AutoProcessor
8
+ model_path = "./"
9
+
10
+ kwargs = {}
11
+ kwargs['torch_dtype'] = torch.bfloat16
12
+
13
+ processor = AutoProcessor.from_pretrained(model_path, trust_remote_code=True)
14
+ model = AutoModelForCausalLM.from_pretrained(model_path, trust_remote_code=True, torch_dtype="auto", _attn_implementation='flash_attention_2').cuda()
15
+
16
+ user_prompt = '<|user|>\n'
17
+ assistant_prompt = '<|assistant|>\n'
18
+ prompt_suffix = "<|end|>\n"
19
+
20
+ #################################################### text-only ####################################################
21
+ prompt = f"{user_prompt}what is the answer for 1+1? Explain it.{prompt_suffix}{assistant_prompt}"
22
+ print(f">>> Prompt\n{prompt}")
23
+ inputs = processor(prompt, images=None, return_tensors="pt").to("cuda:0")
24
+ generate_ids = model.generate(**inputs,
25
+ max_new_tokens=1000,
26
+ eos_token_id=processor.tokenizer.eos_token_id,
27
+ )
28
+ generate_ids = generate_ids[:, inputs['input_ids'].shape[1]:]
29
+ response = processor.batch_decode(generate_ids,
30
+ skip_special_tokens=True,
31
+ clean_up_tokenization_spaces=False)[0]
32
+ print(f'>>> Response\n{response}')
33
+
34
+ #################################################### text-only 2 ####################################################
35
+ prompt = f"{user_prompt}Give me the code for sloving two-sum problem.{prompt_suffix}{assistant_prompt}"
36
+ print(f">>> Prompt\n{prompt}")
37
+ inputs = processor(prompt, images=None, return_tensors="pt").to("cuda:0")
38
+ generate_ids = model.generate(**inputs,
39
+ max_new_tokens=1000,
40
+ eos_token_id=processor.tokenizer.eos_token_id,
41
+ )
42
+ generate_ids = generate_ids[:, inputs['input_ids'].shape[1]:]
43
+ response = processor.batch_decode(generate_ids,
44
+ skip_special_tokens=True,
45
+ clean_up_tokenization_spaces=False)[0]
46
+ print(f'>>> Response\n{response}')
47
+
48
+
49
+ #################################################### EXAMPLE 1 ####################################################
50
+ # single-image prompt
51
+ prompt = f"{user_prompt}<|image_1|>\nWhat is shown in this image?{prompt_suffix}{assistant_prompt}"
52
+ url = "https://www.ilankelman.org/stopsigns/australia.jpg"
53
+ print(f">>> Prompt\n{prompt}")
54
+ image = Image.open(requests.get(url, stream=True).raw)
55
+ inputs = processor(prompt, image, return_tensors="pt").to("cuda:0")
56
+ generate_ids = model.generate(**inputs,
57
+ max_new_tokens=1000,
58
+ eos_token_id=processor.tokenizer.eos_token_id,
59
+ )
60
+ generate_ids = generate_ids[:, inputs['input_ids'].shape[1]:]
61
+ response = processor.batch_decode(generate_ids,
62
+ skip_special_tokens=True,
63
+ clean_up_tokenization_spaces=False)[0]
64
+ print(f'>>> Response\n{response}')
65
+
66
+ #################################################### EXAMPLE 2 ####################################################
67
+ # chat template
68
+ chat = [
69
+ {"role": "user", "content": "<|image_1|>\nWhat is shown in this image?"},
70
+ {"role": "assistant", "content": "The image depicts a street scene with a prominent red stop sign in the foreground. The background showcases a building with traditional Chinese architecture, characterized by its red roof and ornate decorations. There are also several statues of lions, which are common in Chinese culture, positioned in front of the building. The street is lined with various shops and businesses, and there's a car passing by."},
71
+ {"role": "user", "content": "What is so special about this image"}
72
+ ]
73
+ url = "https://www.ilankelman.org/stopsigns/australia.jpg"
74
+ image = Image.open(requests.get(url, stream=True).raw)
75
+ prompt = processor.tokenizer.apply_chat_template(chat, tokenize=False, add_generation_prompt=True)
76
+ # need to remove last <|endoftext|> if it is there, which is used for training, not inference. For training, make sure to add <|endoftext|> in the end.
77
+ if prompt.endswith("<|endoftext|>"):
78
+ prompt = prompt.rstrip("<|endoftext|>")
79
+
80
+ print(f">>> Prompt\n{prompt}")
81
+
82
+ inputs = processor(prompt, [image], return_tensors="pt").to("cuda:0")
83
+ generate_ids = model.generate(**inputs,
84
+ max_new_tokens=1000,
85
+ eos_token_id=processor.tokenizer.eos_token_id,
86
+ )
87
+ generate_ids = generate_ids[:, inputs['input_ids'].shape[1]:]
88
+ response = processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
89
+ print(f'>>> Response\n{response}')
90
+
91
+
92
+ ############################# to markdown #############################
93
+ # single-image prompt
94
+ prompt = f"{user_prompt}<|image_1|>\nCan you convert the table to markdown format?{prompt_suffix}{assistant_prompt}"
95
+ url = "https://support.content.office.net/en-us/media/3dd2b79b-9160-403d-9967-af893d17b580.png"
96
+ image = Image.open(requests.get(url, stream=True).raw)
97
+ inputs = processor(prompt, image, return_tensors="pt").to("cuda:0")
98
+
99
+ print(f">>> Prompt\n{prompt}")
100
+ generate_ids = model.generate(**inputs,
101
+ max_new_tokens=1000,
102
+ eos_token_id=processor.tokenizer.eos_token_id,
103
+ )
104
+ generate_ids = generate_ids[:, inputs['input_ids'].shape[1]:]
105
+ response = processor.batch_decode(generate_ids,
106
+ skip_special_tokens=False,
107
+ clean_up_tokenization_spaces=False)[0]
108
+ print(f'>>> Response\n{response}')
109
+
110
+
111
+ ########################### multi-frame ################################
112
+
113
+ images = []
114
+ placeholder = ""
115
+ for i in range(1,20):
116
+ url = f"https://image.slidesharecdn.com/azureintroduction-191206101932/75/Introduction-to-Microsoft-Azure-Cloud-{i}-2048.jpg"
117
+ images.append(Image.open(requests.get(url, stream=True).raw))
118
+ placeholder += f"<|image_{i}|>\n"
119
+
120
+ messages = [
121
+ {"role": "user", "content": placeholder+"Summarize the deck of slides."},
122
+ ]
123
+
124
+
125
+ prompt = processor.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
126
+
127
+ inputs = processor(prompt, images, return_tensors="pt").to("cuda:0")
128
+
129
+ generation_args = {
130
+ "max_new_tokens": 1000,
131
+ "temperature": 0.0,
132
+ "do_sample": False,
133
+ }
134
+
135
+ generate_ids = model.generate(**inputs, eos_token_id=processor.tokenizer.eos_token_id, **generation_args)
136
+
137
+ # remove input tokens
138
+ generate_ids = generate_ids[:, inputs['input_ids'].shape[1]:]
139
+ response = processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
140
+
141
+ print(response)
142
+
special_tokens_map.json ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|system|>",
4
+ "<|end|>",
5
+ "<|user|>",
6
+ "<|end|>"
7
+ ],
8
+ "bos_token": {
9
+ "content": "<s>",
10
+ "lstrip": false,
11
+ "normalized": false,
12
+ "rstrip": false,
13
+ "single_word": false
14
+ },
15
+ "eos_token": {
16
+ "content": "<|endoftext|>",
17
+ "lstrip": false,
18
+ "normalized": false,
19
+ "rstrip": false,
20
+ "single_word": false
21
+ },
22
+ "pad_token": {
23
+ "content": "<|endoftext|>",
24
+ "lstrip": false,
25
+ "normalized": false,
26
+ "rstrip": false,
27
+ "single_word": false
28
+ },
29
+ "unk_token": {
30
+ "content": "<unk>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false
35
+ }
36
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,413 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "add_prefix_space": null,
5
+ "added_tokens_decoder": {
6
+ "0": {
7
+ "content": "<unk>",
8
+ "lstrip": false,
9
+ "normalized": false,
10
+ "rstrip": false,
11
+ "single_word": false,
12
+ "special": true
13
+ },
14
+ "1": {
15
+ "content": "<s>",
16
+ "lstrip": false,
17
+ "normalized": false,
18
+ "rstrip": false,
19
+ "single_word": false,
20
+ "special": true
21
+ },
22
+ "2": {
23
+ "content": "</s>",
24
+ "lstrip": false,
25
+ "normalized": false,
26
+ "rstrip": true,
27
+ "single_word": false,
28
+ "special": false
29
+ },
30
+ "32000": {
31
+ "content": "<|endoftext|>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false,
36
+ "special": true
37
+ },
38
+ "32001": {
39
+ "content": "<|assistant|>",
40
+ "lstrip": false,
41
+ "normalized": false,
42
+ "rstrip": true,
43
+ "single_word": false,
44
+ "special": true
45
+ },
46
+ "32002": {
47
+ "content": "<|placeholder1|>",
48
+ "lstrip": false,
49
+ "normalized": false,
50
+ "rstrip": true,
51
+ "single_word": false,
52
+ "special": true
53
+ },
54
+ "32003": {
55
+ "content": "<|placeholder2|>",
56
+ "lstrip": false,
57
+ "normalized": false,
58
+ "rstrip": true,
59
+ "single_word": false,
60
+ "special": true
61
+ },
62
+ "32004": {
63
+ "content": "<|placeholder3|>",
64
+ "lstrip": false,
65
+ "normalized": false,
66
+ "rstrip": true,
67
+ "single_word": false,
68
+ "special": true
69
+ },
70
+ "32005": {
71
+ "content": "<|placeholder4|>",
72
+ "lstrip": false,
73
+ "normalized": false,
74
+ "rstrip": true,
75
+ "single_word": false,
76
+ "special": true
77
+ },
78
+ "32006": {
79
+ "content": "<|system|>",
80
+ "lstrip": false,
81
+ "normalized": false,
82
+ "rstrip": false,
83
+ "single_word": false,
84
+ "special": true
85
+ },
86
+ "32007": {
87
+ "content": "<|end|>",
88
+ "lstrip": false,
89
+ "normalized": false,
90
+ "rstrip": false,
91
+ "single_word": false,
92
+ "special": true
93
+ },
94
+ "32008": {
95
+ "content": "<|placeholder5|>",
96
+ "lstrip": false,
97
+ "normalized": false,
98
+ "rstrip": true,
99
+ "single_word": false,
100
+ "special": true
101
+ },
102
+ "32009": {
103
+ "content": "<|placeholder6|>",
104
+ "lstrip": false,
105
+ "normalized": false,
106
+ "rstrip": true,
107
+ "single_word": false,
108
+ "special": true
109
+ },
110
+ "32010": {
111
+ "content": "<|user|>",
112
+ "lstrip": false,
113
+ "normalized": false,
114
+ "rstrip": false,
115
+ "single_word": false,
116
+ "special": true
117
+ },
118
+ "32011": {
119
+ "content": "<|placeholder7|>",
120
+ "lstrip": false,
121
+ "normalized": false,
122
+ "rstrip": true,
123
+ "single_word": false,
124
+ "special": true
125
+ },
126
+ "32012": {
127
+ "content": "<|placeholder8|>",
128
+ "lstrip": false,
129
+ "normalized": false,
130
+ "rstrip": true,
131
+ "single_word": false,
132
+ "special": true
133
+ },
134
+ "32013": {
135
+ "content": "<|placeholder9|>",
136
+ "lstrip": false,
137
+ "normalized": false,
138
+ "rstrip": true,
139
+ "single_word": false,
140
+ "special": true
141
+ },
142
+ "32014": {
143
+ "content": "<|placeholder10|>",
144
+ "lstrip": false,
145
+ "normalized": false,
146
+ "rstrip": true,
147
+ "single_word": false,
148
+ "special": true
149
+ },
150
+ "32015": {
151
+ "content": "<|placeholder11|>",
152
+ "lstrip": false,
153
+ "normalized": false,
154
+ "rstrip": true,
155
+ "single_word": false,
156
+ "special": true
157
+ },
158
+ "32016": {
159
+ "content": "<|placeholder12|>",
160
+ "lstrip": false,
161
+ "normalized": false,
162
+ "rstrip": true,
163
+ "single_word": false,
164
+ "special": true
165
+ },
166
+ "32017": {
167
+ "content": "<|placeholder13|>",
168
+ "lstrip": false,
169
+ "normalized": false,
170
+ "rstrip": true,
171
+ "single_word": false,
172
+ "special": true
173
+ },
174
+ "32018": {
175
+ "content": "<|placeholder14|>",
176
+ "lstrip": false,
177
+ "normalized": false,
178
+ "rstrip": true,
179
+ "single_word": false,
180
+ "special": true
181
+ },
182
+ "32019": {
183
+ "content": "<|placeholder15|>",
184
+ "lstrip": false,
185
+ "normalized": false,
186
+ "rstrip": true,
187
+ "single_word": false,
188
+ "special": true
189
+ },
190
+ "32020": {
191
+ "content": "<|placeholder16|>",
192
+ "lstrip": false,
193
+ "normalized": false,
194
+ "rstrip": true,
195
+ "single_word": false,
196
+ "special": true
197
+ },
198
+ "32021": {
199
+ "content": "<|placeholder17|>",
200
+ "lstrip": false,
201
+ "normalized": false,
202
+ "rstrip": true,
203
+ "single_word": false,
204
+ "special": true
205
+ },
206
+ "32022": {
207
+ "content": "<|placeholder18|>",
208
+ "lstrip": false,
209
+ "normalized": false,
210
+ "rstrip": true,
211
+ "single_word": false,
212
+ "special": true
213
+ },
214
+ "32023": {
215
+ "content": "<|placeholder19|>",
216
+ "lstrip": false,
217
+ "normalized": false,
218
+ "rstrip": true,
219
+ "single_word": false,
220
+ "special": true
221
+ },
222
+ "32024": {
223
+ "content": "<|placeholder20|>",
224
+ "lstrip": false,
225
+ "normalized": false,
226
+ "rstrip": true,
227
+ "single_word": false,
228
+ "special": true
229
+ },
230
+ "32025": {
231
+ "content": "<|placeholder21|>",
232
+ "lstrip": false,
233
+ "normalized": false,
234
+ "rstrip": true,
235
+ "single_word": false,
236
+ "special": true
237
+ },
238
+ "32026": {
239
+ "content": "<|placeholder22|>",
240
+ "lstrip": false,
241
+ "normalized": false,
242
+ "rstrip": true,
243
+ "single_word": false,
244
+ "special": true
245
+ },
246
+ "32027": {
247
+ "content": "<|placeholder23|>",
248
+ "lstrip": false,
249
+ "normalized": false,
250
+ "rstrip": true,
251
+ "single_word": false,
252
+ "special": true
253
+ },
254
+ "32028": {
255
+ "content": "<|placeholder24|>",
256
+ "lstrip": false,
257
+ "normalized": false,
258
+ "rstrip": true,
259
+ "single_word": false,
260
+ "special": true
261
+ },
262
+ "32029": {
263
+ "content": "<|placeholder25|>",
264
+ "lstrip": false,
265
+ "normalized": false,
266
+ "rstrip": true,
267
+ "single_word": false,
268
+ "special": true
269
+ },
270
+ "32030": {
271
+ "content": "<|placeholder26|>",
272
+ "lstrip": false,
273
+ "normalized": false,
274
+ "rstrip": true,
275
+ "single_word": false,
276
+ "special": true
277
+ },
278
+ "32031": {
279
+ "content": "<|placeholder27|>",
280
+ "lstrip": false,
281
+ "normalized": false,
282
+ "rstrip": true,
283
+ "single_word": false,
284
+ "special": true
285
+ },
286
+ "32032": {
287
+ "content": "<|placeholder28|>",
288
+ "lstrip": false,
289
+ "normalized": false,
290
+ "rstrip": true,
291
+ "single_word": false,
292
+ "special": true
293
+ },
294
+ "32033": {
295
+ "content": "<|placeholder29|>",
296
+ "lstrip": false,
297
+ "normalized": false,
298
+ "rstrip": true,
299
+ "single_word": false,
300
+ "special": true
301
+ },
302
+ "32034": {
303
+ "content": "<|placeholder30|>",
304
+ "lstrip": false,
305
+ "normalized": false,
306
+ "rstrip": true,
307
+ "single_word": false,
308
+ "special": true
309
+ },
310
+ "32035": {
311
+ "content": "<|placeholder31|>",
312
+ "lstrip": false,
313
+ "normalized": false,
314
+ "rstrip": true,
315
+ "single_word": false,
316
+ "special": true
317
+ },
318
+ "32036": {
319
+ "content": "<|placeholder32|>",
320
+ "lstrip": false,
321
+ "normalized": false,
322
+ "rstrip": true,
323
+ "single_word": false,
324
+ "special": true
325
+ },
326
+ "32037": {
327
+ "content": "<|placeholder33|>",
328
+ "lstrip": false,
329
+ "normalized": false,
330
+ "rstrip": true,
331
+ "single_word": false,
332
+ "special": true
333
+ },
334
+ "32038": {
335
+ "content": "<|placeholder34|>",
336
+ "lstrip": false,
337
+ "normalized": false,
338
+ "rstrip": true,
339
+ "single_word": false,
340
+ "special": true
341
+ },
342
+ "32039": {
343
+ "content": "<|placeholder35|>",
344
+ "lstrip": false,
345
+ "normalized": false,
346
+ "rstrip": true,
347
+ "single_word": false,
348
+ "special": true
349
+ },
350
+ "32040": {
351
+ "content": "<|placeholder36|>",
352
+ "lstrip": false,
353
+ "normalized": false,
354
+ "rstrip": true,
355
+ "single_word": false,
356
+ "special": true
357
+ },
358
+ "32041": {
359
+ "content": "<|placeholder37|>",
360
+ "lstrip": false,
361
+ "normalized": false,
362
+ "rstrip": true,
363
+ "single_word": false,
364
+ "special": true
365
+ },
366
+ "32042": {
367
+ "content": "<|placeholder38|>",
368
+ "lstrip": false,
369
+ "normalized": false,
370
+ "rstrip": true,
371
+ "single_word": false,
372
+ "special": true
373
+ },
374
+ "32043": {
375
+ "content": "<|placeholder39|>",
376
+ "lstrip": false,
377
+ "normalized": false,
378
+ "rstrip": true,
379
+ "single_word": false,
380
+ "special": true
381
+ },
382
+ "32044": {
383
+ "content": "<|image|>",
384
+ "lstrip": false,
385
+ "normalized": false,
386
+ "rstrip": true,
387
+ "single_word": false,
388
+ "special": true
389
+ }
390
+ },
391
+ "additional_special_tokens": [
392
+ "<|system|>",
393
+ "<|end|>",
394
+ "<|user|>",
395
+ "<|end|>"
396
+ ],
397
+ "auto_map": {
398
+ "AutoProcessor": "processing_phi3_v.Phi3VProcessor"
399
+ },
400
+ "bos_token": "<s>",
401
+ "chat_template": "{% for message in messages %}{{'<|' + message['role'] + '|>' + '\n' + message['content'] + '<|end|>\n' }}{% endfor %}{% if add_generation_prompt and messages[-1]['role'] != 'assistant' %}{{- '<|assistant|>\n' -}}{% endif %}",
402
+ "clean_up_tokenization_spaces": false,
403
+ "eos_token": "<|endoftext|>",
404
+ "legacy": false,
405
+ "model_max_length": 131072,
406
+ "pad_token": "<|endoftext|>",
407
+ "padding_side": "right",
408
+ "processor_class": "Phi3VProcessor",
409
+ "sp_model_kwargs": {},
410
+ "tokenizer_class": "LlamaTokenizer",
411
+ "unk_token": "<unk>",
412
+ "use_default_system_prompt": false
413
+ }