MLX
Safetensors
openelm
custom_code
File size: 14,264 Bytes
6a9a002
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
#
# For licensing see accompanying LICENSE file.
# Copyright (C) 2024 Apple Inc. All Rights Reserved.
#

"""Implements HF OpenELMConfig based on PretrainedConfig"""
from numbers import Number
from typing import List, Optional, Union

import numpy as np
from transformers import PretrainedConfig


def make_divisible(
    v: Union[float, int],
    divisor: Optional[int] = 8,
    min_value: Optional[Union[float, int]] = None,
) -> Union[float, int]:
    """
    This function is taken from the original tf repo.
    It ensures that all layers have a channel number that is divisible by the divisor
    It can be seen at:
    https://github.com/tensorflow/models/blob/2cfc99eff5e5eb729c6793d2f3d03aa1c9be2b15/research/slim/nets/mobilenet/mobilenet.py#L62

    Args:
        v: input value
        divisor: default to 8
        min_value: minimum divisor value
    Returns:
        new_v: new divisible value
    """
    if min_value is None:
        min_value = divisor
    new_v = max(min_value, int(v + divisor / 2) // divisor * divisor)
    # Make sure that round down does not go down by more than 10%.
    if new_v < 0.9 * v:
        new_v += divisor
    return new_v


def compute_heads(model_dim: int, head_dim: int) -> int:
    """Compute the number of heads.

    Args:
        model_dim: Model dimension.
        head_dim: Head dimension.

    Returns:
        An integer denoting number of heads in multi-head attention is returned.

    Raises:
        ValueError: if model dimension is not divisible by head dimension.
    """
    if model_dim % head_dim == 0:
        return model_dim // head_dim
    else:
        raise ValueError(
            f"Model dimension should be divisible by head dimension. Got: {model_dim} and {head_dim}."
        )


OpenELM_CONFIGS = {
    "OpenELM-270M": dict(
        num_transformer_layers=16,
        model_dim=1280,
        head_dim=64,
        num_gqa_groups=4,
        normalize_qk_projections=True,
        share_input_output_layers=True,
        # Vary the FFN and QKV multipliers to create variable FFN and attention layers respectively.
        ffn_multipliers=(0.5, 4.0),
        qkv_multipliers=(0.5, 1.0),
    ),
    "OpenELM-450M": dict(
        num_transformer_layers=20,
        model_dim=1536,
        head_dim=64,
        num_gqa_groups=4,
        normalize_qk_projections=True,
        share_input_output_layers=True,
        # Vary the FFN and QKV multipliers to create variable FFN and attention layers respectively.
        ffn_multipliers=(0.5, 4.0),
        qkv_multipliers=(0.5, 1.0),
    ),
    "OpenELM-1_1B": dict(
        num_transformer_layers=28,
        model_dim=2048,
        head_dim=64,
        num_gqa_groups=4,
        normalize_qk_projections=True,
        share_input_output_layers=True,
        # Vary the FFN and QKV multipliers to create variable FFN and attention layers respectively.
        ffn_multipliers=(0.5, 4.0),
        qkv_multipliers=(0.5, 1.0),
    ),
    "OpenELM-3B": dict(
        num_transformer_layers=36,
        model_dim=3072,
        head_dim=128,
        num_gqa_groups=4,
        normalize_qk_projections=True,
        share_input_output_layers=True,
        # Vary the FFN and QKV multipliers to create variable FFN and attention layers respectively.
        ffn_multipliers=(0.5, 4.0),
        qkv_multipliers=(0.5, 1.0),
    ),
}


class OpenELMConfig(PretrainedConfig):
    r"""
    This is the configuration class to store the configuration of a [`OpenELMModel`]. It is used to instantiate an OpenELM model according to the specified arguments, defining the model architecture.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.

    Args:
        vocab_size (`int`, *optional*, defaults to 32000):
            Vocabulary size of the OpenELM model.
        max_context_length (`int`, *optional*, defaults to 2048):
            Maximum number of input tokens.
        num_transformer_layers (`int`, *optional*, defaults to 12):
            Number of hidden layers in the Transformer decoder.
        model_dim (`int`, *optional*, defaults to 2048):
            Dimension of the hidden representations.
        head_dim (`int`, *optional*, defaults to 128):
            The attention head dimension.
        qkv_multipliers (`Union[Number, List[Number]]`, *optional*, defaults to 1.0):
            If the qkv_multipliers is a Number, then all attention layers have the same latent dimensions,
            resulting in uniform allocation of parameters.
            If the qkv_multipliers is a List of Number, then each attention layer have different latent dimensions
            assuming qkv_multipliers[0] != qkv_multipliers[1]. This results in variable allocation of parameters in attention layer.
            This scaling is known as layer-wise or block-wise scaling: https://arxiv.org/abs/2008.00623
        num_query_heads (`Union[int, None]`, *optional*, defaults to None):
            The number of query heads, computed from `compute_heads(model_dim=model_dim, head_dim=head_dim)`.
        num_gqa_groups (`int`, *optional*, defaults to 1):
            This variable allows to switch between multi-head attention, group query attention, and multi-query attention.
            When num_gqa_groups == 1, then it is multi-head attention.
            When 1 < num_gqa_groups < num_heads and num_heads is divisible by num_gqa_groups, then it is group query attention
            When num_gqa_groups == num_heads, then it is multi-query attention
        ffn_multipliers (`Union[Number, List[Number]]`, *optional*, defaults to 4.0):
            Feed-forward network (FFN) multipliers.
            If the ffn_multipliers is a Number, then all FFN layers have the same latent dimensions,
            resulting in uniform allocation of parameters.
            If the ffn_multipliers is a List of Number, then each FFN layer have different latent dimensions
            assuming ffn_multipliers[0] != ffn_multipliers[1]. This results in variable allocation of parameters in FFN layer.
            This scaling is known as layer-wise or block-wise scaling: https://arxiv.org/abs/2008.00623
        ffn_with_glu (`bool`, *optional*, defaults to True):
            Whether to use FFN with Gated Linear Unit (GLU)
        ffn_dim_divisor (`int`, *optional*, defaults to 256):
            The ffn layer dimension divisor.
        activation_fn_name (`str` or `function`, *optional*, defaults to `"swish"`):
            The non-linear activation function (function or string) in the decoder.
        normalization_layer_name (`str` or `function`, *optional*, defaults to `"rms_norm"`):
            Type of normalization layer.
        normalize_qk_projections (`bool`, *optional*, defaults to False):
            Whether to normalize queries and keys after projections
        share_input_output_layers (`bool`, *optional*, defaults to False):
            Whether to share the embedding between input and output linear layer
        rope_freq_constant (`int`, *optional*, defaults to 10000):
            The base period of the RoPE embeddings.
        rope_max_length (`int`, *optional*, defaults to 4096):
            That rope_max_length is set to twice of max_context_length.
            This allows flexibility in token lengths during training or fine-tuning.
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        use_cache (`bool`, *optional*, defaults to `True`):
            Whether or not the model should return the last key/values attentions (not used by all models). Only
            relevant if `config.is_decoder=True`.
        bos_token_id (`int`, *optional*, defaults to 2):
            Beginning of stream token id.
        eos_token_id (`int`, *optional*, defaults to 1):
            End of stream token id.
    """

    model_type = "openelm"

    def __init__(
        self,
        vocab_size: int = 32000,
        max_context_length: int = 2048,
        num_transformer_layers: int = 12,
        model_dim: int = 2048,
        head_dim: int = 128,
        qkv_multipliers: Union[Number, List[Number]] = 1.0,
        num_query_heads: Union[int, None] = None,
        num_gqa_groups: int = 1,
        ffn_multipliers: Union[Number, List[Number]] = 4.0,
        ffn_with_glu: bool = True,
        ffn_dim_divisor: int = 256,
        activation_fn_name: str = "swish",
        normalization_layer_name: str = "rms_norm",
        normalize_qk_projections: bool = False,
        share_input_output_layers: bool = False,
        rope_freq_constant: int = 10000,
        rope_max_length: int = 4096,
        initializer_range: float = 0.02,
        use_cache: bool = True,
        bos_token_id: int = 1,
        eos_token_id: int = 2,
        **kwargs,
    ) -> None:
        self.vocab_size = vocab_size
        self.max_context_length = max_context_length
        self.num_transformer_layers = num_transformer_layers
        self.model_dim = model_dim
        self.head_dim = head_dim
        self.qkv_multipliers = qkv_multipliers
        self.num_query_heads = num_query_heads
        self.num_gqa_groups = num_gqa_groups
        self.ffn_multipliers = ffn_multipliers
        self.ffn_with_glu = ffn_with_glu
        self.ffn_dim_divisor = ffn_dim_divisor
        self.activation_fn_name = activation_fn_name
        self.normalization_layer_name = normalization_layer_name
        self.normalize_qk_projections = normalize_qk_projections
        self.share_input_output_layers = share_input_output_layers
        self.rope_freq_constant = rope_freq_constant
        self.rope_max_length = rope_max_length
        self.num_query_heads = (
            compute_heads(model_dim=model_dim, head_dim=head_dim)
            if num_query_heads is None
            else num_query_heads
        )
        self.initializer_range = initializer_range

        self.__post_init__()
        super().__init__(
            use_cache=use_cache,
            bos_token_id=bos_token_id,
            eos_token_id=eos_token_id,
            **kwargs,
        )

    def __post_init__(self) -> None:
        if self.num_gqa_groups is not None:
            head_multiple_of = self.num_gqa_groups
        else:
            head_multiple_of = 2

        if isinstance(self.qkv_multipliers, Number):
            # All attention layers have the same latent dimensions, resulting in uniform allocation of parameters.
            qkv_dim = make_divisible(
                self.model_dim * self.qkv_multipliers,
                divisor=self.head_dim * head_multiple_of,
            )
            query_dims = [int(qkv_dim)] * self.num_transformer_layers

        elif (
            isinstance(self.qkv_multipliers, (tuple, list))
            and len(self.qkv_multipliers) == 2
        ):
            # Each attention layer have different latent dimensions assuming qkv_multipliers[0] != qkv_multipliers[1].
            # This results in variable allocation of parameters in attention layer.
            # This scaling is known as layer-wise or block-wise scaling: https://arxiv.org/abs/2008.00623
            qkv_multipliers = [
                round(v, 2)
                for v in np.linspace(
                    self.qkv_multipliers[0],
                    self.qkv_multipliers[1],
                    num=self.num_transformer_layers,
                    dtype=float,
                )
            ]
            # Make sure that scaled model dimension is divisible by scaled head dimension.
            query_dims = [
                int(
                    make_divisible(
                        self.model_dim * m, divisor=self.head_dim * head_multiple_of
                    )
                )
                for m in qkv_multipliers
            ]
        else:
            raise NotImplementedError(
                f"QKV multipliers should be a single number or a list containing exactly two numbers. Got: {qkv_multipliers}."
            )

        # compute the number of query, key, and value heads
        # For multi-head and multi-query attention, the number of heads for query, key, and value are the same.
        # For group query attention, the number of key and value heads are the same.
        self.num_query_heads = [
            int(compute_heads(q_dim, self.head_dim)) for q_dim in query_dims
        ]
        self.num_kv_heads = [
            q_heads // self.num_gqa_groups for q_heads in self.num_query_heads
        ]

        # Feed-forward network (FFN) multipliers
        if isinstance(self.ffn_multipliers, Number):
            # All FFN layers have the same latent dimensions, resulting in uniform allocation of parameters.
            self.ffn_multipliers = [self.ffn_multipliers] * self.num_transformer_layers
        elif isinstance(self.ffn_multipliers, (tuple, list)):
            # Each FFN layer have different latent dimensions assuming ffn_multipliers[0] != ffn_multipliers[1].
            # This results in variable allocation of parameters in FFN layer.
            # This scaling is known as layer-wise or block-wise scaling: https://arxiv.org/abs/2008.00623
            if len(self.ffn_multipliers) == 2:
                self.ffn_multipliers = [
                    round(v, 2)
                    for v in np.linspace(
                        self.ffn_multipliers[0],
                        self.ffn_multipliers[1],
                        num=self.num_transformer_layers,
                        dtype=float,
                    )
                ]
            else:
                assert (
                    len(self.ffn_multipliers) == self.num_transformer_layers
                ), f"{len(self.ffn_multipliers)=}!={self.num_transformer_layers=}"
        else:
            raise NotImplementedError(
                f"FFN multipliers should be a single number or a list containing exactly two numbers. Got: {qkv_multipliers}."
            )

        # check num_query_heads divisible by num_kv_heads for every layer
        for layer_idx in range(len(query_dims)):
            assert self.num_query_heads[layer_idx] % self.num_kv_heads[layer_idx] == 0