Text Generation
Transformers
Safetensors
English
Inference Endpoints
File size: 1,902 Bytes
6096f5a
 
6045cfb
 
 
 
 
 
6096f5a
 
 
 
6045cfb
6096f5a
 
 
 
 
 
6045cfb
 
 
 
6096f5a
6045cfb
6096f5a
6045cfb
6096f5a
6045cfb
 
 
 
6096f5a
6045cfb
6096f5a
6045cfb
 
6096f5a
 
 
6045cfb
6096f5a
6045cfb
6096f5a
 
 
 
6045cfb
6096f5a
 
 
 
 
6045cfb
6096f5a
 
 
6045cfb
6096f5a
 
 
6045cfb
6096f5a
 
 
 
6045cfb
 
 
 
 
 
 
 
 
6096f5a
 
 
6045cfb
6096f5a
 
 
 
6045cfb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
---
library_name: transformers
license: mit
datasets:
- mlsquare/CLIENT_samantar_mixed_train_val
language:
- en
pipeline_tag: text-generation
---

# Model Card for Model ID

Adapter for mlsquare/pico_seshu_test using LoRA on "model.layers.3.out_proj". Standard use of PEFT on Mamba-hf model


## Model Details

### Model Description

- **Developed by:** MLsquare
- **Model type:** Next Character Generation
- **Language(s) (NLP):** All languages in ai4bharat/samanantar dataset
- **License:** MIT

## Model Details

### Model Description

- **Developed by:** MLsquare
- **Model type:** Next Character Generation
- **Language(s) (NLP):** All languages in ai4bharat/samanantar dataset
- **License:** MIT

### Model Sources [optional]

- **Repository:** https://github.com/LegallyCoder/mamba-hf
- **Paper:** https://arxiv.org/abs/2312.00752

## Uses

Refer to the github repository for more information
### Direct Use
Refer to the github repository for more information


## How to Get Started with the Model

Refer to the github repository: https://github.com/mlsquare/fedem

## Training Details

### Training Data

Individual target and source sentences from the AI4Bharat Samanantar dataset. All 11 language sentences and their translations have been stacked and used for next character generation task.

### Training Procedure 

Trained on the next character generation task using cross-entropy loss.

#### Preprocessing [optional]

converted to raw UTF8 characters before training by using ByT5-large tokenizer


#### Training Hyperparameters

- **Training regime:**
  output_dir="mamba",
  per_device_train_batch_size=1,
  per_device_eval_batch_size=1,
  num_train_epochs=4,
  weight_decay=0.1,
  lr_scheduler_type="cosine",
  learning_rate=5e-4,
  fp16=False,

## Evaluation

A simple cross-entropy loss has been used to test the pipeline and working of the model.


## Model Card Contact

MLsquare