--- license: mit language: - ru - en pipeline_tag: sentence-similarity tags: - russian - fill-mask - pretraining - embeddings - masked-lm - tiny - feature-extraction - sentence-similarity - sentence-transformers - transformers widget: - text: Метод опорных векторов --- SciRus-tiny is a model to obtain embeddings of scientific texts in russian and english. Model was trained on [eLibrary](https://www.elibrary.ru/) data with contrastive technics described in [habr post](https://habr.com/ru/articles/781032). High metrics values were achieved on the [ruSciBench](https://github.com/mlsa-iai-msu-lab/ru_sci_bench/tree/main) benchmark. ### How to get embeddings ```python from transformers import AutoTokenizer, AutoModel import torch import torch.nn.functional as F tokenizer = AutoTokenizer.from_pretrained("mlsa-iai-msu-lab/sci-rus-tiny") model = AutoModel.from_pretrained("mlsa-iai-msu-lab/sci-rus-tiny") # model.cuda() # if you want to use a GPU def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) def get_sentence_embedding(title, abstract, model, tokenizer, max_length=None): # Tokenize sentences sentence = ''.join([title, abstract]) encoded_input = tokenizer( [sentence], padding=True, truncation=True, return_tensors='pt', max_length=max_length).to(model.device) # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) # Normalize embeddings sentence_embeddings = F.normalize(sentence_embeddings, p=2, dim=1) return sentence_embeddings.cpu().detach().numpy()[0] print(get_sentence_embedding('some title', 'some abstract', model, tokenizer).shape) # (312,) ``` Or you can use the `sentence_transformers`: ```Python from sentence_transformers import SentenceTransformer model = SentenceTransformer('mlsa-iai-msu-lab/sci-rus-tiny') embeddings = model.encode(['привет мир']) print(embeddings[0].shape) # (312,) ``` ### Authors Benchmark developed by MLSA Lab of Institute for AI, MSU. ### Acknowledgement The research is part of the project #23-Ш05-21 SES MSU "Development of mathematical methods of machine learning for processing large-volume textual scientific information". We would like to thank [eLibrary](https://elibrary.ru/) for provided datasets. ### Contacts Nikolai Gerasimenko (nikgerasimenko@gmail.com), Alexey Vatolin (vatolinalex@gmail.com)